Structural Determinants of Transmembrane β-Barrels.

J Chem Theory Comput

Department of Chemistry, City College of New York/CUNY, 138th Street & Convent Avenue, New York, New York 10031.

Published: July 2005

The recognition of β-barrel membrane proteins based on their sequence is more challenging than the recognition of α-helical membrane proteins. This goal could benefit from a better understanding of the physical determinants of transmembrane β-barrel structure. To that end, we first extend the IMM1 implicit membrane model in a way that allows the modeling of membrane proteins with an internal aqueous pore. The new model (IMM1-pore) gives stable molecular dynamics trajectories for three β-barrel membrane proteins of different sizes and negative water-to-membrane transfer energies of reasonable magnitude. It also discriminates the correct fold for a pair of 10-stranded and 12-stranded transmembrane β-barrels. We then consider a pair of β-barrel proteins:  OmpA, which is a membrane β-barrel with hydrophobic residues on the exterior and polar residues in the interior, and retinol binding protein, which is a water soluble protein with polar residues on the exterior and hydrophobic residues in the interior. By threading the sequence of one onto the structure of the other we make two pairs of structures for each sequence, one native and the other a decoy, and evaluate their energy. The energy function discriminates the correct structure. By decomposing the energy into residue contributions we examine which features of each sequence make it fold into one or the other structure. It is found that for the OmpA sequence the largest contribution to stability comes from interactions between polar residues in the interior of the barrel. The major factor that prevents the retinol binding protein sequence from adopting a transmembrane fold is the presence of polar/charged residues at the edges of the putative transmembrane β-strands as well as the less favorable interior polar residue interactions. These results could help design simplified scoring functions for fold recognition and structure prediction of transmembrane β-barrels.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ct050055xDOI Listing

Publication Analysis

Top Keywords

membrane proteins
16
transmembrane β-barrels
12
polar residues
12
residues interior
12
determinants transmembrane
8
β-barrel membrane
8
discriminates correct
8
hydrophobic residues
8
residues exterior
8
retinol binding
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!