Twenty one mock-up samples containing inorganic pigments primarily used at the turn of the 19th and 20th century were selected for comparative study and measured by micro-Raman and portable Raman spectrometers. They included pure grounds (chalk-based, earth-based and lithopone-based), grounds covered by resin-based varnish, and different paint layers containing mixtures of white, yellow, orange, red, green, blue and black pigments, usually in combination with white pigments (titanium, zinc and barium whites or chalk). In addition, ten micro-samples obtained from seven paintings of two world-famous modern painters Edvard Munch and František Kupka have been investigated. Infrared reflection spectroscopy (FTIR), portable X-ray fluorescence (XRF) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) were used as supplementary methods. The measurements showed that blue pigments (ultramarine, Prussian blue and azurite), vermilion and ivory black in mixture with whites provided characteristic Raman spectra, while Co-, Cd- and Cr- pigments' bands were suppressed by fluorescence. The best success rate of micro-Raman spectroscopy has been achieved using the 780 nm excitation, however, the sensitivity of this excitation laser in a portable Raman instrument significantly decreased. The analyses of micro-samples of paintings by E. Munch and F. Kupka showed that micro-Raman spectroscopy identified pigments which would remain unidentified if analyzed only by SEM-EDS (zinc yellow, Prussian blue). On the other hand, chromium oxide green and ultramarine were not detected together in a sample due to overlap of their main bands. In those cases, it is always necessary to complement Raman analysis with other analytical methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2015.11.027DOI Listing

Publication Analysis

Top Keywords

micro-raman spectroscopy
12
portable raman
8
micro-samples paintings
8
prussian blue
8
spectroscopy
5
pigments
5
efficiency micro-raman
4
spectroscopy analysis
4
analysis complicated
4
complicated mixtures
4

Similar Publications

By integrating iron-cobalt squarate bimetallic metal-organic framework (Fe-Co-SqBMoF) based smart material (SM) with functional DNA (fDNA), we designed a target responsive fDNA@Fe-Co-SqBMoF bioelectrode that exhibits recognition induced switchable response to serve as a reagentless single step electrochemical apta-switch (REA). The construct takes advantage of fDNA ability to bind and concentrate target on the receptor interface, while Fe-Co-SqBMoF@SM multifeatures to serve as an immobilization matrix and a signal generating electrochemical switch. Fe-Co-SqBMoF was introduced to prepare a redox active pencil graphite electrode (PGE), while fDNA (aptamer) was decorated on the receptor PGE to impart specificity and selectivity.

View Article and Find Full Text PDF

The present study demonstrates the applicability of non-destructive and rapid spectroscopic techniques, specifically laser-induced fluorescence, ultraviolet-visible, and confocal micro-Raman spectroscopy, as non-invasive, eco-friendly, and robust multi-compound analytical methods for assessing biochemical changes in maize seedling leaves resulting from the treatment of aluminium oxide nanoparticles. The recorded fluorescence spectrum of the leaves shows that the treatment of different concentration of aluminium oxide nanoparticles decreases the chlorophyll content as observed by the increase in fluorescence emission intensity ratio (FIR = I/I). The analysis of ultraviolet-visible absorption measurements reveals that the amount of chlorophyll a, chlorophyll b, total chlorophyll and carotenoid decrease for treated plants with respect to untreated seedlings.

View Article and Find Full Text PDF

Microplastics (MPs, <5 mm) are widespread in coastal ecosystems and pose a growing global concern; however, their presence in deep-sea environments remains underexplored, especially in the Indian region. This study addresses this gap by providing the first comprehensive documentation of MPs in the Central Indian Ocean Basin (CIOB) at a depth of 5000 m, marking the initial effort to assess their presence and abundance in deep-sea core samples. The study investigated the MP concentration, composition and potential sources, revealing a size range between 10 μm and 4900 μm, with average abundances recorded at BC20 (10.

View Article and Find Full Text PDF

Identification and detection of label-free polystyrene microplastics in maize seedlings by Raman spectroscopy.

Sci Total Environ

December 2024

School of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China. Electronic address:

Microplastics are a new type of pollutants that have attracted attention recently. However, there is limited research on the uptake of environmental microplastics by plants. In this study, scanning electron microscopy (SEM), micro-Raman spectroscopy, and Raman mapping were employed to identify and detect label-free micron-sized polystyrene (PS) microplastics accumulated in the roots and stems of maize (Zea mays L.

View Article and Find Full Text PDF

Silicon carbide is a wide-bandgap semiconductor useful in a new class of power devices in the emerging area of high-temperature and high-voltage electronics. The diffusion of SiC devices is strictly related to the growth of high-quality substrates and epitaxial layers involving high-temperature treatment processing. In this work, we studied the thermal stability of substrates of 4H-SiC in an inert atmosphere in the range 1600-2000 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!