A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Normal-Mode Analysis of Circular DNA at the Base-Pair Level. 1. Comparison of Computed Motions with the Predicted Behavior of an Ideal Elastic Rod. | LitMetric

Normal-Mode Analysis of Circular DNA at the Base-Pair Level. 1. Comparison of Computed Motions with the Predicted Behavior of an Ideal Elastic Rod.

J Chem Theory Comput

Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Wright-Rieman Laboratories, 610 Taylor Road, Piscataway, New Jersey 08854-8087, and Quantum Bioinformatics Group, Center for Promotion of Computational Science and Engineering, Japan Atomic Energy Research Institute, 8-1 Umemidai, Kizu, Kyoto 619-0215, Japan.

Published: January 2005

We have extended a newly developed approach to study the low-frequency normal modes of mesoscopic fragments of linear DNA in order to investigate the dynamics of closed circular molecules of comparable size, i.e., a few hundred base pairs. We have added restraint energy terms and a global minimization step to treat the more complicated, spatially constrained duplex in terms of the intrinsic conformation and flexibility of the constituent base-pair "step" parameters. Initial application of the methodology to the normal modes of an ideal closed circular DNA molecule [Formula: see text] which is naturally straight in its relaxed open linear state, inextensible, and capable of isotropic bending and independent twisting at the base-pair level [Formula: see text] matches theoretical predictions of elastic rod dynamics. The energy-optimized closed circular states and the types of low frequency motions follow expected behavior, with (1) uniform twist density and uniform energy density in the minimum energy state; (2) a near-zero frequency torsional mode with "free" rotation about the global helical axis; (3) higher-order torsional modes accompanied by global rocking motions and pure in-plane and out-of-plane bending motions in the torsionally relaxed circle; and (4) mixed modes of bending when the chain is supercoiled (over- or undertwisted). Furthermore, the computed changes in normal-mode frequencies with imposed supercoiling or with variation of chain length are virtually identical to theoretically predicted values.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ct049950rDOI Listing

Publication Analysis

Top Keywords

closed circular
12
circular dna
8
base-pair level
8
elastic rod
8
normal modes
8
[formula text]
8
normal-mode analysis
4
circular
4
analysis circular
4
dna base-pair
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!