Dkk3 prevents familial dilated cardiomyopathy development through Wnt pathway.

Lab Invest

Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing, China.

Published: February 2016

To date, the role of Dickkopf 3 (Dkk3) on the pathogenesis of familial dilated cardiomyopathy (FDCM), and whether and how Dkk3 interferes with Wnt signaling in heart tissues remains unknown. Here, we demonstrate that strong Dkk3 expression was markedly downregulated in adult hearts from WT mice, and Dkk3 expression was upregulated suddenly in hearts from DCM mouse models. Using Dkk3 transgenic and knockout mice, as well as cTnT(R141W) transgenic mice, which manifests progressive chamber dilation and contractile dysfunction and has pathologic phenotypes similar to human DCM patients, we determined that transgenic expression of Dkk3 increased survival rate, improved cardiac morphology breakage and dysfunction, and ameliorated cardiac pathological changes in the cTnT(R141W) mice. In contrast, Dkk3 knockout reduced the survival rate and aggravated the pathological phenotypes of the cTnT(R141W) mice. The protective effects of Dkk3 appeared clearly at 3 months of age, peaked at 6 months of age, and decreased at 10 months of age in the cTnT(R141W) mice. Furthermore, we determined that Dkk3 upregulated Dvl1 (Dishevelled 1) and key proteins of the canonical Wnt pathway (cytoplasmic and nuclear β-catenin, c-Myc, and Axin2) and downregulated key proteins of the noncanonical Wnt pathway (c-Jun N-terminal kinase (JNK), Ca(2+)/calmodulin-dependent protein kinase II (CAMKII), and histone deacetylase 4 (HDAC4)). In contrast, Dkk3 knockout reversed these changes in the cTnT(R141W) mice. In summary, Dkk3 could prevent FDCM development in mice, especially in the compensatory stage, and probably through activation of the canonical and inhibition of the noncanonical Wnt pathway, which suggested that Dkk3 could serve as a therapeutic target for the treatment of cardiomyopathy and heart failure.

Download full-text PDF

Source
http://dx.doi.org/10.1038/labinvest.2015.145DOI Listing

Publication Analysis

Top Keywords

wnt pathway
16
ctntr141w mice
16
dkk3
13
months age
12
familial dilated
8
dilated cardiomyopathy
8
dkk3 expression
8
mice
8
survival rate
8
changes ctntr141w
8

Similar Publications

Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional endocytic receptor whose dysfunction is linked to developmental dysplasia of the hip, osteoporosis and osteoarthritis. Our work addresses the critical question of how these skeletal pathologies emerge. Here, we show the abundant expression of LRP1 in skeletal progenitor cells at mouse embryonic stage E10.

View Article and Find Full Text PDF

Small molecules are emerging as potential candidates for treating osteoporosis by activating canonical Wnt signaling. These candidates work either by inhibiting DKK-1, sclerostin, SFRP-1, NOTUM, and S1P lyase or by preventing β-catenin degradation through inhibition of GSK-3β, or by targeting Dvl-CXXC5 and axin/β-catenin interactions. While many of these anti-osteoporotic small molecules are in preclinical development, the paucity of FDA-approved small molecules, or promising candidates, that have progressed to clinical trials for treating bone disorders through this mechanism poses a challenge.

View Article and Find Full Text PDF

HNF4α inhibits the malignancy of intrahepatic cholangiocarcinoma by suppressing the Wnt signaling pathway.

Transl Oncol

January 2025

Department of Gastroenterology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China. Electronic address:

Previous studies have demonstrated that intrahepatic cholangiocarcinoma (ICC) may derive from transdifferentiation of hepatocytes, so transforming ICC cells into hepatocytes could be a potential strategy for treating ICC. Hepatocyte nuclear factor 4α (HNF4α), a master transcription factor in the liver, has been demonstrated to induce the differentiation of hepatocellular carcinoma, while its effects on ICC remains unclear. Ivosidenib, an isocitrate dehydrogenase 1 (IDH1) inhibitor, is a novel targeted drug for ICC patients.

View Article and Find Full Text PDF

Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.

View Article and Find Full Text PDF

Introduction: Resistance to lenvatinib limits the effectiveness of the targeted treatments for HCC. However, the exact mechanism behind this resistance remains elusive. Current research suggests that circular RNA (circRNA) is pivotal in mediating drug resistance during targeted treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!