Methane (CH) is a potent greenhouse gas that is normally produced by microbial fermentation in the rumen and released to the environment mainly during eructation. Prediction of ruminal CH production is important for ruminant nutrition, especially for the determination of ME intake to assess the amount of total GE available for metabolism by an animal. Equations have been developed to predict ruminal CH production based on dietary constituents, but none have considered condensed tannins (CT), which are known to impact CH production by ruminants. The objective was to develop an equation to predict ruminal CH, accounting for CT effects. Methane production data were acquired from 48-h in vitro fermentation of a diverse group of warm-season perennial forage legumes containing different concentrations of CT over the course of 3 yr ( = 113). The following nonlinear exponential decay regression equation was developed: CH₄ = 113.6 × exp (-0.1751 x CT) - 2.18), [corrected] in which CH is expressed in grams per kilogram of fermentable organic matter and CT is in percentage of the DM. This equation predicted that CH production could be reduced by approximately 50% when CT is 3.9% DM. This equation is likely more accurate when screening CT-containing forages for their potential ability to mitigate in vitro CH production by ruminants when the CT concentration is greater than 3% DM. Therefore, despite the degree of variability in ruminal CH production, this equation could be used as a tool for screening CT-containing forages for their potential to inhibit ruminal CH. Future research should focus on the development of predictive equations when other potential reducers of ruminal CH are used in conjunction with CT.

Download full-text PDF

Source
http://dx.doi.org/10.2527/jas.2015-9434DOI Listing

Publication Analysis

Top Keywords

ruminal production
12
condensed tannins
8
nonlinear exponential
8
exponential decay
8
decay regression
8
predict ruminal
8
production ruminants
8
screening ct-containing
8
ct-containing forages
8
forages potential
8

Similar Publications

Epidemiological and molecular characteristics of extraintestinal pathogenic escherichia coli isolated from diseased cattle and sheep in Xinjiang, China from 2015 to 2019.

BMC Vet Res

January 2025

State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang, China.

Escherichia coli has become a common causative agent of infections in animals, inflicting serious economic losses on livestock production and posing a threat to public health. Escherichia coli infection is common and tends to be complex in Xinjiang, a major region of cattle and sheep breeding in China. This study aims to explore the current status and molecular characteristics of Escherichia coli infection in cattle and sheep in Xinjiang, as part of the disease prevention and control strategy.

View Article and Find Full Text PDF

Background: Coccidia are among the primary pathogens causing diarrhea and even fatalities in lambs. With the increasing use of chemical drugs to treat coccidiosis, the problem of drug resistance is becoming more and more threatening. Therefore, there is an urgent need to identify novel alternative drugs for the treatment of the lamb coccidia.

View Article and Find Full Text PDF

Background: Bovine viral diarrhoea virus genotype 1 (BVDV-1) and bluetongue virus (BTV) are potent viral pathogens that may be transmitted through semen, resulting in the spread of diseases via artificial insemination. Thus, establishing an early detection method for BVDV-1 and BTV infection is important for the trading of semen. In this study, we developed two RT‒ddPCR methods to detect BVDV-1 and BTV, and each method was evaluated for repeatability, limit of detection and specificity.

View Article and Find Full Text PDF

The ossa cordis (OC), or cardiac bone, is a bony structure within the cardiac skeleton of mammals, believed to maintain heart shape during systole and enhance contraction efficiency. Found in large mammals, especially ruminants, and has recently been described in chimpanzees; however, OC has not previously been described in humans. Herein, we present an incidental finding of OC in the heart of a 39-year-old man who suffered a stab wound to chest.

View Article and Find Full Text PDF

Prediction of dry matter intake in growing Black Bengal goats using artificial neural networks.

Trop Anim Health Prod

January 2025

Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India.

Dry matter intake (DMI) determination is essential for effective management of meat goats, especially in optimizing feed utilization and production efficiency. Unfortunately, farmers often face challenges in accurately predicting DMI which leads to wastage of feed and an increase in the cost of production. This investigation aimed to predict DMI in Black Bengal goats by using body weight (BW), body condition score (BCS), average daily gain (ADG), and metabolic body weight (MBW) by applying an artificial neural network (ANN) model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!