Water quality modeling in the dead end sections of drinking water distribution networks.

Water Res

Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, MO 63130, USA. Electronic address:

Published: February 2016

Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Water quality models developed so far apply spatial aggregation and temporal averaging techniques for hydraulic parameters by assigning hourly averaged water demands to the main nodes of the network. Although this practice has generally resulted in minimal loss of accuracy for the predicted disinfectant concentrations in main water transmission lines, this is not the case for the peripheries of the distribution network. This study proposes a new approach for simulating disinfectant residuals in dead end pipes while accounting for both spatial and temporal variability in hydraulic and transport parameters. A stochastic demand generator was developed to represent residential water pulses based on a non-homogenous Poisson process. Dispersive solute transport was considered using highly dynamic dispersion rates. A genetic algorithm was used to calibrate the axial hydraulic profile of the dead-end pipe based on the different demand shares of the withdrawal nodes. A parametric sensitivity analysis was done to assess the model performance under variation of different simulation parameters. A group of Monte-Carlo ensembles was carried out to investigate the influence of spatial and temporal variations in flow demands on the simulation accuracy. A set of three correction factors were analytically derived to adjust residence time, dispersion rate and wall demand to overcome simulation error caused by spatial aggregation approximation. The current model results show better agreement with field-measured concentrations of conservative fluoride tracer and free chlorine disinfectant than the simulations of recent advection dispersion reaction models published in the literature. Accuracy of the simulated concentration profiles showed significant dependence on the spatial distribution of the flow demands compared to temporal variation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2015.11.025DOI Listing

Publication Analysis

Top Keywords

water quality
12
water
9
sections drinking
8
drinking water
8
water distribution
8
distribution networks
8
residence time
8
disinfectant residuals
8
spatial aggregation
8
spatial temporal
8

Similar Publications

Uncertainty analysis in river quality management considering failure probability: controllable and uncontrollable input pollutants.

Ecotoxicol Environ Saf

January 2025

Chair of Engineering Hydrology and Water Management, Technical University of Darmstadt, Darmstadt, Germany. Electronic address:

River quality management involves complex challenges due to inherent uncertainties in various parameters, especially when dealing with controllable and uncontrollable pollutants. This study integrates a finite volume approach, called SEF (symmetric exponential function), with Monte Carlo simulations in MATLAB to solve the advection-dispersion equation, focusing on evaluating river quality protection tools by considering failure probability (P). Critical specifications for maintaining reliable river ecosystem performance are identified.

View Article and Find Full Text PDF

The new EU Urban Wastewater Treatment Directive requires stricter limits introducing quaternary treatments and poses significant challenges to achieving a sustainable environment. Advanced membrane-based treatment processes combined with mathematical models can be a good solution for facing the challenges above. Most existing literature on membrane filtration models primarily focuses on membrane bioreactors, lacking mechanistic models on ultrafiltration (UF) membranes.

View Article and Find Full Text PDF

Effectiveness of diet modification on dietary nutrient intake, aspiration, and fluid intake for adults with dysphagia: a meta-analysis of randomized controlled trials.

J Nutr Health Aging

January 2025

School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan. Electronic address:

Objectives: To determine and explore the effectiveness of diet modification on dietary nutrient intake, aspiration, and fluid intake in adults with dysphagia.

Participants: Adults with dysphagia.

Design: A meta-analysis of randomized controlled trials (RCTs).

View Article and Find Full Text PDF

This study examines the presence of potentially toxic elements (PTEs) in the surface sediments and water of the Ashtamudi wetland, a Ramsar site on India's southwest coast. The average concentration of PTEs in water(μg/L) and in sediments (mg/kg) follows the order Fe(147.89) > Zn(107.

View Article and Find Full Text PDF

The riverine dissolved organic matter (DOM) pool constitutes the largest and most dynamic organic carbon reservoir within inland aquatic systems. Human activities significantly alter the distribution of organic matter (OM) in rivers, thereby affecting the availability of DOM. However, the impact of total suspended solids (TSS) on DOM under anthropogenic influence remains insufficiently elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!