Chemotherapy often results in cognitive impairment, and no neuroprotective drug is now available. This study aimed to understand underlying neurotoxicological mechanisms of anticancer drugs and to evaluate neuroprotective effects of PAN-811. Primary neurons in different concentrations of antioxidants (AOs) were insulted for 3 days with methotrexate (MTX), 5-fluorouracil (5-FU), or cisplatin (CDDP) in the absence or presence of PAN-811·Cl·H2O. The effect of PAN-811 on the anticancer activity of tested drugs was also examined using mouse and human cancer cells (BNLT3 and H460) to assess any negative interference. Cell membrane integrity, survival, and death and intramitochondrial reactive oxygen species (ROS) were measured. All tested anticancer drugs elicited neurotoxicity only under low levels of AO and elicited a ROS increase. These results suggested that ROS mediates neurotoxicity of tested anticancer drugs. PAN-811 dose-dependently suppressed increased ROS and blocked the neurotoxicity when neurons were insulted with a tested anticancer drug. PAN-811 did not interfere with anticancer activity of anticancer drugs against BNLT3 cells. PAN-811 did not inhibit MTX-induced death of H460 cells but, interestingly, demonstrated a synergistic effect with 5-FU or CDDP in reducing cancer cell viability. Thus, PAN-811 can be a potent drug candidate for chemotherapy-induced cognitive impairment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4657105 | PMC |
http://dx.doi.org/10.1155/2016/9392404 | DOI Listing |
Recent Pat Anticancer Drug Discov
January 2025
Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, P.R. China.
Garlic has been consumed globally as a functional food and traditional medicine for various ailments. Its active organosulfur compounds (OSCs) have demonstrated significant anticancer properties, particularly against gastric cancer. However, a comprehensive review of these effects and the underlying molecular mechanisms, including their role in overcoming drug resistance, is currently lacking.
View Article and Find Full Text PDFFuture Med Chem
January 2025
Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India.
The study of chalcone-1,2,3-triazole hybrids for anticancer activity is quite a recent area of focus, primarily because of the increasing demand for developing new drugs to treat cancer. The chalcones and 1,2,3-triazole rings in hybrid compounds has recently emerged as a promising strategy for developing novel anticancer agents. The 1,2,3-triazole ring, known for its stability and hydrogen bonding capabilities, enhances the target binding affinity of these hybrids.
View Article and Find Full Text PDFBioinorg Chem Appl
December 2024
Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Via Monteroni I-73100, Italy.
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive type of solid tumor that is becoming more common. -[PtCl (NH)] (in short cisplatin or CDDP) has been shown to be effective in treating various cancers, including PDAC. However, the development of resistance to chemotherapy drugs has created a need for the synthesis of new anticancer agents.
View Article and Find Full Text PDFBMJ Oncol
January 2024
Medical Oncology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada.
In the field of general medicine, class effects, or therapeutic interchangeability, have been declared for several families of drugs including statins, calcium channel blockers and ACE inhibitors. The existence of such class effects enables healthcare payers to negotiate for substantially lower drug prices, thereby reducing financial toxicity, both at an individual and societal levels. Until now, the existence of class effects in oncology has been considered rare.
View Article and Find Full Text PDFJ Pharm Anal
January 2025
Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun, 130012, China.
Significant investment in nanocarrier drug delivery systems (Nano-DDSs) has yielded only a limited number of successfully marketed nanomedicines, highlighting a low rate of clinical translation. A primary contributing factor is the lack of foundational understanding of processes. Comprehensive knowledge of the pharmacokinetics of Nano-DDSs is essential for developing more efficacious nanomedicines and accurately evaluating their safety and associated risks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!