AI Article Synopsis

Article Abstract

Transparent heaters have attracted increasing attention for their usefulness in vehicle windows, outdoor displays, and periscopes. We present high performance transparent heaters based on Ag nanowires with electron beam irradiation. We obtained an Ag-nanowire thin film with 48 ohm/sq of sheet resistance and 88.8% (substrate included) transmittance at 550 nm after electron beam irradiation for 120 sec. We demonstrate that the electron beam creates nano-soldering at the junctions of the Ag nanowires, which produces lower sheet resistance and improved adhesion of the Ag nanowires. We fabricated a transparent heater with Ag nanowires after electron beam irradiation, and obtained a temperature of 51 °C within 1 min at an applied voltage of 7 V. The presented technique will be useful in a wide range of applications for transparent heaters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4671054PMC
http://dx.doi.org/10.1038/srep17716DOI Listing

Publication Analysis

Top Keywords

electron beam
20
transparent heaters
12
beam irradiation
12
transparent heater
8
nanowires electron
8
sheet resistance
8
electron
5
nanowires
5
transparent
5
beam irradiated
4

Similar Publications

Characterization of the upgraded photoinjector at the Chinese Academy of Engineering Physics Terahertz Free Electron Laser Facility.

Rev Sci Instrum

January 2025

National Key Laboratory of Science and Technology on Advanced Laser and High Power Microwave, Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China.

The Chinese Academy of Engineering Physics Terahertz Free Electron Laser Facility (CAEP THz FEL, CTFEL) has been operated as a user facility for over five years. To further meet the growing demands of modern science, an upgrade project for an infrared-terahertz free electron laser facility based on CTFEL has been proposed to broaden the frequency range from 0.1-4.

View Article and Find Full Text PDF

Stable Field Emissions from Zirconium Carbide Nanoneedle Electron Source.

Nanomaterials (Basel)

January 2025

Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255, USA.

In this study, a single zirconium carbide (ZrC) nanoneedle structure oriented in the <100> direction was fabricated by a dual-beam focused ion beam (FIB-SEM) system, and its field emission characteristics and emission current stability were evaluated. Benefiting from controlled fabrication with real-time observation, the ZrC nanoneedle has a smooth surface and a tip with a radius of curvature smaller than 20 nm and a length greater than 2 μm. Due to its low work function and well-controlled morphology, the ZrC nanoneedle emitter, positioned in a high-vacuum chamber, was able to generate a single and collimated electron beam with a current of 1.

View Article and Find Full Text PDF

Electron Beam-Assisted Au Nanocrystal Shear and Rotation.

Nano Lett

January 2025

School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand.

Understanding metastable structural transitions under beam irradiation is essential for the phase engineering of nanomaterials. However, in situ studies of beam-induced structural transitions remain challenging. This work uses an electron beam in aberration-corrected high-angle annular dark-field scanning transmission electron microscopy to irradiate Au nanocrystals at room temperature.

View Article and Find Full Text PDF

Hydrogels are widely utilized in industrial and scientific applications owing to their ability to immobilize active molecules, cells, and nanoparticles. This capability has led to their growing use in various biomedical fields, including cell culture and transplantation, drug delivery, and tissue engineering. Among the available synthesis techniques, ionizing-radiation-induced fabrication stands out as an environmentally friendly method for hydrogel preparation.

View Article and Find Full Text PDF

The intercalation of metal chlorides, and particularly iron chlorides, into graphitic carbon structures has recently received lots of attention, as it can not only protect this two-dimensional (2D) magnetic system from the effects of the environment but also substantially alter the magnetic, electronic, and optical properties of both the intercalant and host material. At the same time, intercalation can result in the formation of structural defects or defects can appear under external stimuli, which can affect materials performance. These aspects have received so far little attention in dedicated experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!