Inner hair cell (IHC) ribbon synapses of cochlea play important role in transmitting sound signal into auditory nerve and are sensitive to ototoxicity. However, ototoxic damage of ribbon synapses is not understood clearly. Roles of fibroblast growth factor 22 (FGF22) on synapse formation were explored under gentamycin ototoxicity. 6-week-old mice were injected intraperitoneally once daily with 50-150 mg/kg gentamicin for 10 days. Immunostaining with anti- GluR2&3/CtBP2 was used to estimate the number of ribbon synapses in the cochlea. Expression of FGF22 and myocyte enhancer factor 2D (MEF2D) was assayed with RT-PCR. Expression and localization of FGF22 protein were visualized with anti-FGF22 immunostaining. Hearing thresholds were assessed using auditory brainstem responses. Gentamicin administration caused reduction in ribbon synapse number and hearing impairment without effect on hair cells in CBA/J mouse model. Immunohistochemistry showed that FGF22 protein was expressed in IHCs, but not OHCs of cochlea. Gentamycin attenuated expression of FGF22 but enhanced expression of MEF2D. Cochlear infusion of recombinant FGF22 inhibited expression of MEF2D, preserved ribbon synapses, and restored hearing function impaired by gentamycin. FGF22 restores hearing loss through maintaining ribbon synapse number, likely via inhibition of MEF2D. Activating FGF22 might provide the conceptual basis for the therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.heares.2015.11.011 | DOI Listing |
Methods Mol Biol
January 2025
Quantum-Si, Guilford, CT, USA.
Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful technique for studying the structural dynamics of protein molecules or detecting interactions between protein molecules in real time. Due to the high sensitivity in spatial and temporal resolution, smFRET can decipher sub-populations within heterogeneous native state conformations, which are generally lost in traditional measurements due to ensemble averaging. In addition, the single-molecule reconstitution allows protein molecules to be observed for an extensive period of time and can recapitulate the geometry of the cellular environment to retain biological function.
View Article and Find Full Text PDFElife
December 2024
Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.
To encode continuous sound stimuli, the inner hair cell (IHC) ribbon synapses utilize calcium-binding proteins (CaBPs), which reduce the inactivation of their Ca1.3 calcium channels. Mutations in the gene underlie non-syndromic autosomal recessive hearing loss DFNB93.
View Article and Find Full Text PDFHear Res
December 2024
Neuroscience Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA. Electronic address:
Noise-induced cochlear synaptopathy has been studied for over 25 years with no known diagnosis for this disorder in humans. This type of "hidden hearing loss" induces a loss of synapses in the inner ear but no change in audiometric thresholds. Recent studies have shown that by two months post synaptopathy-inducing noise exposure, synapses in some animal species can regenerate.
View Article and Find Full Text PDFNeurosci Bull
December 2024
Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
Noise-induced hearing loss is a worldwide public health issue that is characterized by temporary or permanent changes in hearing sensitivity. This condition is closely linked to inflammatory responses, and interventions targeting the inflammatory gene tumor necrosis factor-alpha (TNFα) are known to mitigate cochlear noise damage. TNFα-induced proteins (TNFAIPs) are a family of translucent acidic proteins, and TNFAIP6 has a notable association with inflammatory responses.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
December 2024
Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!