The perception of signals of abiotic stressors by plant cells is accompanied by the increase of cytosolic calcium concentration, content of reactive oxygen species (ROS) and nitrogen monoxide (NO) which execute the role of signal mediators at the activation of gene expression, supervising protective reactions. Calcium ions, ROS, and NO are in the multiple functional interactions which provides the intensifying and transduction of signals into genetic apparatus as well as their attenuation. The increase of content, at least, of one of these signal mediators in cells can cause activation of some signal cascades and formation of plant adaptive reactions.

Download full-text PDF

Source

Publication Analysis

Top Keywords

abiotic stressors
8
reactive oxygen
8
signal mediators
8
[signal mediators
4
mediators plants
4
plants responses
4
responses abiotic
4
stressors calcium
4
calcium reactive
4
oxygen nitrogen
4

Similar Publications

Soil salinization, extreme climate conditions, and phytopathogens are abiotic and biotic stressors that remarkably reduce agricultural productivity. Recently, nanomaterials have gained attention as effective agents for agricultural applications to mitigate such stresses. This review aims to critically appraise the available literature on interactions involving nanomaterials, plants, and microorganisms.

View Article and Find Full Text PDF

Flax ( L.) is known as a dual-purpose crop, producing both fiber and oil, which have a wide range of uses. Successful flax breeding requires knowledge on the genetic determinants of flax traits.

View Article and Find Full Text PDF

Worldwide, many coastal freshwater ecosystems suffer from seawater intrusion. In addition to this stressor, it is likely that the biota inhabiting these ecosystems will also need to deal with climate change-related temperature fluctuations. The resilience of populations to long-term exposure to these stressors will depend on their genetic diversity, a key for their adaptation to changing environments.

View Article and Find Full Text PDF

Unlabelled: Biological diversity is declining across the tree of life, including among prokaryotes. With the increasing awareness of host-associated microbes as potential regulators of eukaryotic host physiology, behavior, and ecology, it is important to understand the implications of declining diversity within host microbiomes on host fitness, ecology, and ecosystem function. We used phytoplankton and their associated environmental microbiomes as model systems to test the independent and interactive effects of declining microbiome diversity with and without other stressors often caused by human activity-elevated temperature and altered nutrient availability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!