Effect of change in particle number on pulmonary clearance of aerosolized 99mTc-DTPA.

J Appl Physiol (1985)

Department of Clinical Physiology, Rigshospitalet, Copenhagen, Denmark.

Published: June 1989

Pulmonary clearance (PCl) of inhaled aerosolized 99mTc-diethylenetriamine pentaacetic acid (DTPA) across the alveolocapillary membrane is diffusion limited. Therefore, if the mixing of the 99mTc-DTPA in the aqueous hypophase underlying surfactant is slow or incomplete or if there were no hypophase, an increase in the alveolar surface area occupied by 99mTc-DTPA particles would increase the absorption rate. The aim of this study was to examine whether there is an effect on PCl of changing the number of inhaled particles. The change in particle number was accomplished by a setup of four parallel jet nebulizers feeding a central delivery chamber of 400 cm3. We performed two kinds of experiments in eight healthy nonsmokers between 28 and 52 yr of age. In the first experiment, 99mTc-DTPA in saline was nebulized in one nebulizer, while saline was nebulized in the other three. In the second experiment the number of inhaled particles containing 99mTc-DTPA was increased by a factor of four by nebulizing 99mTc-DTPA in saline in all four nebulizers simultaneously. Increasing the number of inhaled 99mTc-DTPA particles caused an increase in PCl of 24.2% (P less than 0.01). We conclude that there is a slight but significant effect of changing the number of DTPA particles on PCl and that this is probably due to an uneven mixing of the 99mTc-DTPA in the aqueous hypophase underlying the surfactant lining and the alveoli.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jappl.1989.66.6.2750DOI Listing

Publication Analysis

Top Keywords

number inhaled
12
change particle
8
particle number
8
pulmonary clearance
8
99mtc-dtpa
8
mixing 99mtc-dtpa
8
99mtc-dtpa aqueous
8
aqueous hypophase
8
hypophase underlying
8
underlying surfactant
8

Similar Publications

Sea spray aerosol (SSA) is a complex mixture of natural substances that can be inhaled by coastal residents. Previous studies have suggested that SSA may have positive effects on human health, but the molecular mechanisms and the factors influencing these effects are poorly understood. In this study, we exposed human bronchial epithelial cells (BEAS-2B) to natural SSA samples, collected monthly using quartz microfiber filters mounted on tripods within 15 m of the waterline, with air drawn through pumps, throughout a one-year period at the Ostend coast, Belgium, and measured cellular gene expression changes using RNA sequencing.

View Article and Find Full Text PDF

E-cigarettes (E.cigs) cause inflammation and damage to human organs, including the lungs and heart. In the gut, E.

View Article and Find Full Text PDF

Individuals with chronic obstructive pulmonary disease (COPD) and cognitive impairment (CI) often face difficulties accurately administering inhalers, which are essential for managing their respiratory condition. Many elderly individuals make major errors that prevent proper medicine administration. Maintaining proper inhaler use skills is critical in controlling COPD.

View Article and Find Full Text PDF

Background: Advances in imaging technology have enhanced the detection of pulmonary nodules. However, determining malignancy often requires invasive procedures or repeated radiation exposure, underscoring the need for safer, noninvasive diagnostic alternatives. Analyzing exhaled volatile organic compounds (VOCs) shows promise, yet its effectiveness in assessing the malignancy of pulmonary nodules remains underexplored.

View Article and Find Full Text PDF

Background: Literature regarding the advantages of HFNC in infants for ensuring oxygen supply after non-cardiac surgery is insufficient. The purpose of our study is to compare COT vs. HFNC on postoperative outcomes in infants undergoing non-cardiac surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!