Background: Mantle cell lymphoma (MCL), a B-cell lymphoma, pursues a relatively aggressive course, is resistant to long-term remission, and is associated with a poor prognosis. There is a pressing need for innovative treatment approaches against MCL. One such approach is targeted delivery of cytotoxic drugs to MCL cells.

Materials And Methods: In the current investigation, we pursued a strategy to employ retinoid-based or curcumin-based nanoscale delivery particles, called nanodisks (NDs), for targeted drug delivery to MCL cells (Granta), and human follicular lymphoma (HF-1) cells. The cells were incubated with NDs made of CD20 single-chain variable antibody fragment (scFv)/apolipoprotein A-1 fusion protein, and loaded with either all-trans retinoic acid (ATRA) or curcumin, and cell apoptosis was measured using flow cytometry.

Results And Conclusion: At 10 μM, curcumin-ND induced cell death more effectively than ATRA-ND. Combination of curcumin-ND and ATRA-ND significantly enhanced the biological activity of these drugs against lymphoma cells compared to individual treatments.

Download full-text PDF

Source

Publication Analysis

Top Keywords

nanoscale delivery
8
delivery particles
8
all-trans retinoic
8
retinoic acid
8
lymphoma cells
8
lymphoma
5
cells
5
novel nanoscale
4
delivery
4
particles encapsulated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!