Purpose: In in vitro maturation (IVM) cycles primed with human chorionic gonadotropin (hCG), both immature and mature oocytes are retrieved from antral follicles sized 8-12 mm. Using time-lapse microscopy, we compared the morphokinetic behavior of embryos developed from oocytes matured in vivo and in vitro, testing the hypothesis that IVM affects preimplantation development. Furthermore, we extended the morphokinetic analysis of these embryos by a comparison with embryos obtained in stimulated assisted reproduction technology (ART) cycles.
Methods: In IVM cycles primed with follicle-stimulating hormone (FSH)/hCG, prior to sperm microinjection, oocytes surrounded by an expanded cumulus at retrieval and presumably mature (EC-MII) were incubated for 6 h, while immature oocytes enclosed in a compact cumulus (CC) were matured in vitro for 30 h. The morphokinetics of embryos selected for transfer or cryopreservation, derived from EC-MII and CC oocytes, were comparatively and retrospectively analyzed in terms of cleavage times (t2, t3, t4, t5, and t8) and intervals (cc2, cc3, s2, s3). For further comparison, the morphokinetics of embryos selected for transfer or cryopreservation (ICSI) or giving rise to ongoing pregnancies (model) in stimulated ART cycles was also assessed.
Results: The morphokinetic behavior of EC-MII and CC embryos was entirely comparable, as suggested by the absence of statistical differences in the averages of all cleavage times and intervals. Almost all cleavage and interval times were also similar between EC-MII, CC, ICSI, and model groups, with the exception of t4 and s2, which were delayed and longer, respectively, in embryos generated in IVM cycles (EC-MII and CC).
Conclusions: These findings do not support the hypothesis that maturation in vitro affects embryo morphokinetics, while they suggest only marginal differences in the morphokinetics of embryos developed from oocytes matured in vivo and in vitro in IVM cycles and embryos developed from mature oocytes recovered in stimulated cycles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4759010 | PMC |
http://dx.doi.org/10.1007/s10815-015-0625-9 | DOI Listing |
Hum Reprod
December 2024
IVIRMA Global Research Alliance, IVI Foundation, Health Research Institute La Fe, Valencia, Spain.
Study Question: Is it possible to predict an euploid chromosomal constitution and identify a transcriptomic profile compatible with extended embryonic development from RNA sequencing (RNA-Seq) data?
Summary Answer: It has been possible to obtain a karyotype comparable to preimplantation genetic testing for aneuploidy (PGT-A), in addition to a transcriptomic signature of embryos which might be suggestive of improved implantation capacity.
What Is Known Already: Conventional assessment of embryo competence, based on morphology and morphokinetic, lacks knowledge of molecular aspects and faces controversy in predicting ploidy status. Understanding the embryonic transcriptome is crucial, as gene expression influences development and implantation.
Study Question: Does one-step warming (OW), a simplified embryo warming protocol, adversely affect survival and developmental potential in vitrified cleavage or blastocyst stage embryos compared to standard multi-step warming (SW)?
Summary Answer: OW showed no detrimental effects on survival and developmental potential compared to SW in cleavage and blastocyst stage embryos.
What Is Known Already: While standard embryo warming protocols involve a multi-step procedure using a stepwise osmotic solution to avoid a rapid influx of water into the embryo, recent studies suggest that eliminating the stepwise warming process does not reduce embryo survival and embryo transfer outcomes. However, previous reports have focused primarily on pregnancy rates, and a more detailed analysis of the effects of rapid osmotic pressure changes on embryos is necessary to standardize the protocol.
Heliyon
December 2024
Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, 430030, China.
Background: The change of morphokinetic pattern in aneuploid embryos will facilitate the non-invasive selection of euploid embryos. In this study, we investigated the impact of different chromosomal abnormalities on the morphokinetic patterns of embryonic development.
Methods: Our cohort includes 939 time-lapse preimplantation genetic testing cycles performed between January 2019 and July 2022 at a single academic fertility center, with a total of 2876 biopsied blastocysts.
F S Sci
December 2024
Robinson Research Institute, School of Biomedicine, University of Adelaide; Adelaide, SA 5005 Australia. Electronic address:
Objective: To study the efficacy of mitochondrial activator BGP-15 to preserve sperm quality and competence against cellular damage.
Design: Spermatozoa from mice or humans were treated in vitro with BGP-15 and sperm quality markers assessed. Spermatozoa from young (8-12 weeks old) or reproductively old (>14 months old) mice were treated with BGP-15 for 1h and assessed for sperm quality and pre-implantation embryo development after in vitro fertilization (IVF).
Sci Rep
November 2024
ImVitro, AI Team, Paris, France.
The use of time lapse systems (TLS) in In Vitro Fertilization (IVF) labs to record developing embryos has paved the way for deep-learning based computer vision algorithms to assist embryologists in their morphokinetic evaluation. Today, most of the literature has characterized algorithms that predict pregnancy, ploidy or blastocyst quality, leaving to the side the task of identifying key morphokinetic events. Using a dataset of N = 1909 embryos collected from multiple clinics equipped with EMBRYOSCOPE/EMBRYOSCOPE+ (Vitrolife), GERI (Genea Biomedx) or MIRI (Esco Medical), this study proposes a novel deep-learning architecture to automatically detect 11 kinetic events (from 1-cell to blastocyst).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!