Lichen Usnea barbata transplants were tested as a biomonitor of atmospheric deposition in an apparently pristine environment that is Tierra del Fuego region (Patagonia, Argentina). The present survey is connected with the volcanic eruption that started in north Patagonia on June 4, 2011 from the Puyehue-Cordón Caulle volcano, Chile (north Patagonia, at 1700 km of distance of our sampling sites). Lichens were collected in September 2011 (one month of exposure) and September 2012 (1 year of exposure) in 27 sites covering the northern region of the province where trees are not present. The atmospheric deposition of 27 elements by using Neutron Activation Analysis (NAA) was determined in the collected samples. The first aim of the study was to evaluate the influence of the volcanic eruption on the regional atmospheric deposition comparing our results with baseline data we determined in U. barbata in 2006 in the same sites. The second aim was to test possible patterns of bioaccumulation between the two sampling campaigns after the volcanic eruption. With respect to 2006 baseline levels, we found significant higher levels for As, Ba, Co, Cr, Cs, Na, Sb and U in lichens collected after 1 month of exposure (first sampling campaign--2011). Between the two sampling campaigns (2011-2012) after the eruption, lichens reflected the natural contamination by volcanic ashes with significantly higher median levels of Br, Cr, Fe, K, Na, Sc, and Se. Results confirmed the very good aptitude of U. barbata to reflect the levels of elements in the environment at global scale and to reflect the volcanic emissions at distant places. Volcanic eruptions cause the emission in the atmosphere of elevated levels of particulate matter. In this regard, our findings demonstrate the importance to evaluate the metal composition of the particles to avoid possible health effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-015-5858-8 | DOI Listing |
Layered deposits are found on the plateaus surrounding the western portion of Valles Marineris, mantling the chasmata rims. These rim deposits exhibit intricate layering and are described as light-toned layered deposits (LLDs) in previous studies. Light-toned layered deposits are thought to be composed of pyroclastic ash that was emplaced during volcanic eruptions and later chemically altered.
View Article and Find Full Text PDF: Cholera remains a major (and increasing) global public health problem. Goma, in the eastern Democratic Republic of Congo (DRC), has been a major cholera hotspot in Africa since 1994 and is currently experiencing one of the largest outbreaks in the world. This article contributes to the existing scholarship on cholera risk by utilizing a variety of qualitative research methods.
View Article and Find Full Text PDFIntegr Psychol Behav Sci
December 2024
Sigmund-Freud-University, Vienna, Austria.
This commentary outlines a novel agenda for future mindfulness research, building on various authors' insights, particularly Indius (Indius, S. (2024). Meditation and Self-transcendence: A Human need? Integrative Psychological and Behavioral Science, 58(3), 878-883), who integrates Maslow's hierarchy of needs into the discussion of mindfulness.
View Article and Find Full Text PDFAn Acad Bras Cienc
December 2024
Universidade Federal do Rio Grande do Sul, Centro Polar e Climático, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil.
This study investigated the chemical content of a shallow snow core (4.95 m) named TT 6, collected during a Brazilian traverse of the West Antarctic Ice Sheet in the 2014/2015 Austral summer. Stable isotope ratios (δD and δ18O) and ionic content, determined at the Centro Polar e Climático of the Federal University of Rio Grande do Sul (CPC/UFRGS), were used to date the core and reconstruct the climatic conditions at the site.
View Article and Find Full Text PDFSci Adv
December 2024
Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK.
Alongside the Chicxulub meteorite impact, Deccan volcanism is considered a primary trigger for the Cretaceous-Paleogene (K-Pg) mass extinction. Models suggest that volcanic outgassing of carbon and sulfur-potent environmental stressors-drove global temperature change, but the relative timing, duration, and magnitude of such change remains uncertain. Here, we use the organic paleothermometer MBT' and the carbon-isotope composition of two K-Pg-spanning lignites from the western Unites States, to test models of volcanogenic air temperature change in the ~100 kyr before the mass extinction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!