Objective: Our previous study found that high miR-150 expression was positively correlated with prostate tumor recurrence or metastasis. In this work, we investigated the expression of miR-150 in prostate cancer stem cells (CSCs) and explored its regulation over p27 in the development of CSCs.

Materials And Methods: MiR-150 expression in CD144 or CD44 positive primary prostate cells and in DU145 cell line was measured. It regulation over CSCs was measured using tumor sphere assay and qRT-PCR analysis of CSC related Oct4, Nestin and Nanog genes. The direct binding between miR-150 and 3'UTR of p27 mRNA was verified using dual luciferase, qRT-PCR and western blot assay. The influence of miR-150-p27 axis on prostate CSC properties was further investigated.

Results: Findings of this study found miR-150 expression was significantly upregulated in CD44+ or CD133+ subgroups of prostate cancer cells. MiR-150 could directly target 3'UTR of p27 and decrease its expression, through which it increased the number and volume of tumor sphere formed by DU145 cells, as well as the expression of CSC related Oct4, Nestin and Nanog genes.

Conclusions: Increased miR-150 expression might participate in the development and progression of human prostate CSC by suppressing p27. This supported our previous study which found miR-150 was positively correlated with prostate tumor recurrence or metastasis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

mir-150 expression
16
prostate cancer
12
mir-150
9
prostate
8
cancer stem
8
previous study
8
positively correlated
8
correlated prostate
8
prostate tumor
8
tumor recurrence
8

Similar Publications

Cutaneous (CLE) and systemic lupus erythematosus (SLE) are autoimmune diseases with a multifactorial pathogenesis. Ultraviolet radiation (UVR) is the most important trigger of CLE; however, the degree of photosensitivity varies between the clinical subtypes. The expression of matrix metalloproteinases (MMPs)-important enzymes involved in skin turnover and homeostasis-is modulated by UVR.

View Article and Find Full Text PDF

MicroRNA (miRNA) dysregulation has been identified in several carcinomas, including non-small cell lung cancer (NSCLC), and is known to play a role in the development and progression of this disease. We initially conducted a miRNA microarray analysis, which revealed that the MNK inhibitor CGP57380 increased the expression of miR-150-3p. A similar analysis was performed using data from The Cancer Genome Atlas (TCGA).

View Article and Find Full Text PDF

MicroRNA (miR: small noncoding RNA)-150 is evolutionarily conserved and is downregulated in patients with diverse forms of heart failure (HF) and in multiple mouse models of HF. Moreover, miR-150 is markedly correlated with the outcome of patients with HF. We previously reported that systemic or cardiomyocyte-derived miR-150 in mice elicited myocardial protection through the inhibition of cardiomyocyte death, without affecting neovascularization and T cell infiltration.

View Article and Find Full Text PDF

The efficacy of statins as anti-cancer drugs has been demonstrated in several malignancies but has been poorly investigated in hematological malignancies (HM). By studying its effect on oncogenic miRNAs, we investigated the effect of statin therapy on HM patients. The data were used to identify enriched pathways that were altered due to statin treatment.

View Article and Find Full Text PDF

Introduction: The development and progression of Hepatocellular Carcinoma (HCC) is more relevant to immune regulation. Therefore, there is an urgent need to find immune-related molecular markers that can predict the prognosis and immune status of HCC.

Methods: RNA-seq and clinical HCC data from the Cancer Genome Atlas (TCGA) were analyzed for differential expression of microRNA (miRNAs), mRNAs, and lncRNAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!