Relativistic Effects on the Topology of the Electron Density.

J Chem Theory Comput

Laboratorium für Physikalische Chemie, ETH Zurich, Hönggerberg Campus, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland, Institut für Physik, Universität Augsburg, Universitätsstrasse 1, D-86159 Augsburg, Germany, and Institut für Anorganische Chemie, Ruprechts-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany.

Published: November 2007

The topological analysis of electron densities obtained either from X-ray diffraction experiments or from quantum chemical calculations provides detailed insight into the electronic structure of atoms and molecules. Of particular interest is the study of compounds containing (heavy) transition-metal elements, which is still a challenge for experiment as well as from a quantum-chemical point of view. Accurate calculations need to take relativistic effects into account explicitly. Regarding the valence electron density distribution, these effects are often only included indirectly through relativistic effective core potentials. But as different variants of relativistic Hamiltonians have been developed all-electron calculations of heavy elements in combination with various electronic structure methods are feasible. Yet, there exists no systematic study of the topology of the total electron density distribution calculated in different relativistic approximations. In this work we therefore compare relativistic Hamiltonians with respect to their effect on the electron density in terms of a topological analysis. The Hamiltonians chosen are the four-component Dirac-Coulomb, the quasi-relativistic two-component zeroth-order regular approximation, and the scalar-relativistic Douglas-Kroll-Hess operators.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ct7001573DOI Listing

Publication Analysis

Top Keywords

electron density
16
relativistic effects
8
topological analysis
8
electronic structure
8
density distribution
8
relativistic hamiltonians
8
relativistic
6
electron
5
effects topology
4
topology electron
4

Similar Publications

Background: Treatment of deep carious lesions poses significant challenges in dentistry, as complete lesion removal risks compromising pulp vitality, while selective removal often reduces the longevity of restorations. Herein, we propose a minimally invasive approach using High-Intensity Focused Ultrasound (HIFU) for microscale removal of carious dentine. Concurrently, HIFU's antimicrobial effects against associated cariogenic biofilms and the corresponding thermal and biological impacts on surrounding tissues were investigated.

View Article and Find Full Text PDF

Overall water splitting (OWS) to produce hydrogen has attracted large attention in recent years due to its ecological-friendliness and sustainability. However, the efficiency of OWS has been forced by the sluggish kinetics of the four-electron oxygen evolution reaction (OER). The replacement of OER by alternative electrooxidation of small molecules with more thermodynamically favorable potentials may fundamentally break the limitation and achieve hydrogen production with low energy consumption, which may also be accompanied by the production of more value-added chemicals than oxygen or by electrochemical degradation of pollutants.

View Article and Find Full Text PDF

Background: Staphylococcus aureus, a known contributor to non-healing wounds, releases vesicles (SAVs) that influence the delicate balance of host-pathogen interactions. Efferocytosis, a process by which macrophages clear apoptotic cells, plays a key role in successful wound healing. However, the precise impact of SAVs on wound repair and efferocytosis remains unknown.

View Article and Find Full Text PDF

LiZrF-based electrolytes for durable lithium metal batteries.

Nature

January 2025

School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China.

Lithium (Li) metal batteries (LMBs) are promising for high-energy-density rechargeable batteries. However, Li dendrites formed by the reaction between highly active Li and non-aqueous electrolytes lead to safety concerns and rapid capacity decay. Developing a reliable solid-electrolyte interphase is critical for realizing high-rate and long-life LMBs, but remains technically challenging.

View Article and Find Full Text PDF

Topological design of π electrons in zigzag-edged graphene nanoribbons (ZGNRs) leads to a wealth of magnetic quantum phenomena and exotic quantum phases. Symmetric ZGNRs typically show antiferromagnetically coupled spin-ordered edge states. Eliminating cross-edge magnetic coupling in ZGNRs not only enables the realization of a class of ferromagnetic quantum spin chains, enabling the exploration of quantum spin physics and entanglement of multiple qubits in the one-dimensional limit, but also establishes a long-sought-after carbon-based ferromagnetic transport channel, pivotal for ultimate scaling of GNR-based quantum electronics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!