Statement Of The Problem: Root resorption (RR) after orthodontic tooth movement (OTM) is known as a multifactorial complication of orthodontic treatments. Hormonal deficiencies and their effect on bone turnover are reported to have influences on the rate of tooth movement and root resorption.
Purpose: This study was designed to evaluate the effect of female and male steroid sex hormones on tooth movement and root resorption.
Materials And Method: Orthodontic appliances were placed on the right maxillary first molars of 10 ovariectomized female and 10 orchiectomized male Wistar rats as experimental groups and 10 female and 10 male healthy Wistar rats as control groups. NiTi closed-coil springs (9mm, Medium, 011"×.030", Ortho Technology(®); Tampa, Florida) were placed between the right incisors and the first right maxillary molars to induce tipping movement in the first molars with the application of a 60g force. After 21 days, the rats were sacrificed and tooth movement was measured by using a digital caliper (Guanglu, China). Orthodontic induced root resorption (OIRR) was assessed by histomorphometric analysis after hematoxylin and eosin staining of sections of the mesial root.
Results: The rate of tooth movement was significantly higher in all female rats, with the root resorption being lower in the experimental group. The rate of tooth movement in experimental male rats was significantly higher than the control group (p= 0.001) and the rate of root resorption was significantly lower in the experimental group (p= 0.001).
Conclusion: It seems that alterations in plasma levels of estrogen, progesterone, and testosterone hormones can influence the rate of OTM and RR. The acceleration in tooth movement increased OTM and decreased RR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4664026 | PMC |
BMC Oral Health
January 2025
Department of Stomatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
Background: Proper torque control is crucial to the outcome of orthodontic treatment. This study aimed to employ finite element analysis to compare the torque capabilities of a novel spherical self-ligating bracket with a lock-hook system against those of commonly used passive self-ligating and conventional bracket systems, as well as to reveal the biomechanical changes in the periodontal ligament (PDL) during torque expression.
Methods: A maxillary right central incisor, along with its PDL and alveolar bone, were modeled.
Clin Oral Investig
January 2025
Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
Introduction: This randomized clinical trial compared arch dimensional changes, dentoskeletal changes, and the rate of overbite correction in deep bite adults treated with fixed appliances and either maxillary incisor bite turbos (IBT) or canine bite turbos (CBT).
Materials And Methods: Forty-six deep bite subjects treated with fixed appliances were randomized into IBT (n = 23) and CBT (n = 23) groups. Changes in intercanine width (ICW), arch height (AH), and Little's Irregularity Index (LII) were analyzed from before treatment (T) to 3 months after aligning with 0.
J Vis Exp
December 2024
School of Engineering and Materials Science, Queen Mary University of London.
Under current minimally invasive treatment regimes, minor tooth preparation and thinner biomimetic ceramic restoration are used to preserve the restored tooth's vitality, aesthetics, and function. New computer-aided design and computer-aided manufacturing (CAD/CAM) ceramic-like material are now available. To guarantee longevity, a dental clinician must know these newly launched product's mechanical strength compared to the relatively brittle glass-matrix ceramic.
View Article and Find Full Text PDFGenes Dis
March 2025
College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
Orthodontic tooth movement (OTM) depends on periodontal ligament cells (PDLCs), which sense biomechanical stimuli and initiate alveolar bone remodeling. Light (optimal) forces accelerate OTM, whereas heavy forces decelerate it. However, the mechanisms by which PDLCs sense biomechanical stimuli and affect osteoclastic activities under different mechanical forces (MFs) remain unclear.
View Article and Find Full Text PDFProg Orthod
January 2025
Institute for Innovation in Digital Healthcare (IIDH), Yonsei University Health System, Seoul, Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!