Elevated CO2 often increases grain yield in wheat by enhancing grain number per ear, which can result from an increase in the potential number of florets or a reduction in the death of developed florets. The hypotheses that elevated CO2 reduces floret death rather than increases floret development, and that grain size in a genotype with more grains per unit area is limited by the rate of grain filling, were tested in a pair of sister lines contrasting in tillering capacity (restricted- vs. free-tillering). The hypotheses were tested under elevated CO2, combined with +3°C above ambient temperature and terminal drought, using specialized field tunnel houses. Elevated CO2 increased net leaf photosynthetic rates and likely the availability of carbon assimilates, which significantly reduced the rates of floret death and increased the potential number of grains at anthesis in both sister lines by an average of 42%. The restricted-tillering line had faster grain-filling rates than the free-tillering line because the free-tillering line had more grains to fill. Furthermore, grain-filling rates were faster under elevated CO2 and +3°C above ambient. Terminal drought reduced grain yield in both lines by 19%. Elevated CO2 alone increased the potential number of grains, but a trade-off in yield components limited grain yield in the free-tillering line. This emphasizes the need for breeding cultivars with a greater potential number of florets, since this was not affected by the predicted future climate variables.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4653290PMC
http://dx.doi.org/10.3389/fpls.2015.01010DOI Listing

Publication Analysis

Top Keywords

elevated co2
24
potential number
16
floret death
12
terminal drought
12
grain yield
12
number florets
8
sister lines
8
+3°c ambient
8
co2 increased
8
increased potential
8

Similar Publications

It is crucial to elucidate the impact of climate change on wheat production in China. This article provides a review of the current climate change scenario and its effects on wheat cultivation in China, along with an examination of potential future impacts and possible response strategies. Against the backdrop of climate change, several key trends emerge: increasing temperature during the wheat growing season, raising precipitation, elevated CO concentration, and diminished radiation.

View Article and Find Full Text PDF

Carbon Dioxide Upgrading to Biodegradable Plastics through Photo/Electro-Synthetic Biohybrid Systems.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.

The escalating emissions of anthropogenic carbon dioxide (CO) and the pervasive issue of nondegradable plastic pollution underscore dual urgent challenges in pursuit of a sustainable society. Achieving such sustainability in the plastic industry, while effectively addressing these environmental concerns, necessitates the development and implementation of innovative strategies for the synthesis of biodegradable polymers utilizing CO as feedstocks. The technologies not only facilitate the mitigation of elevated atmospheric CO concentrations but also introduce a renewable carbon resource for polymer manufacturing.

View Article and Find Full Text PDF

Herbivorous insects need to cope with changing host plant biochemistry caused by abiotic and biotic impacts, to meet their dietary requirements. Larvae of the multivoltine European grapevine moth Lobesia botrana, one of the main insect pests in viticulture, feed on both flowers and berries. The nutritional value and defence compounds of these organs are changing with plant phenology and are affected by climate change which may accordingly alter plant-insect interactions.

View Article and Find Full Text PDF

Nitrogen Assimilation Plays a Role in Balancing the Chloroplastic Glutathione Redox Potential Under High Light Conditions.

Plant Cell Environ

January 2025

The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.

Nitrate reduction requires reducing equivalents produced by the photosynthetic electron transport chain. Therefore, it has been suggested that nitrate assimilation provides a sink for electrons under high light conditions. We tested this hypothesis by monitoring photosynthetic efficiency and the chloroplastic glutathione redox potential (chl-E) of plant lines with mutated glutamine synthetase 2 (GS2) and ferredoxin-dependent glutamate synthase 1 (GOGAT1).

View Article and Find Full Text PDF

Increasing atmospheric CO levels have a variety of effects that can influence plant responses to microbial pathogens. However, these responses are varied, and it is challenging to predict how elevated CO (eCO) will affect a particular plant-pathogen interaction. We investigated how eCO may influence disease development and responses to diverse pathogens in the major oilseed crop, soybean.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!