Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm.

Front Neurorobot

Department of Physiology and Pharmacology, State University of New York Downstate Medical Center Brooklyn, NY, USA ; The Robert Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center Brooklyn, NY, USA ; Joint Graduate Program in Biomedical Engineering, State University of New York Downstate and Polytechnic Institute of New York University Brooklyn, NY, USA ; Department of Neurology, State University of New York Downstate Medical Center Brooklyn, NY, USA ; Department of Neurology, Kings County Hospital Center Brooklyn, NY, USA.

Published: December 2015

Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-layered cortex, composed of several hundred spiking model-neurons, which display physiologically realistic dynamics. We interconnected the cortical model to a two-joint musculoskeletal model of a human arm, with realistic anatomical and biomechanical properties. The virtual arm received muscle excitations from the neuronal model, and fed back proprioceptive information, forming a closed-loop system. The cortical model was trained using spike timing-dependent reinforcement learning to drive the virtual arm in a 2D reaching task. Limb position was used to simultaneously control a robot arm using an improved network interface. Virtual arm muscle activations responded to motoneuron firing rates, with virtual arm muscles lengths encoded via population coding in the proprioceptive population. After training, the virtual arm performed reaching movements which were smoother and more realistic than those obtained using a simplistic arm model. This system provided access to both spiking network properties and to arm biophysical properties, including muscle forces. The use of a musculoskeletal virtual arm and the improved control system allowed the robot arm to perform movements which were smoother than those reported in our previous paper using a simplistic arm. This work provides a novel approach consisting of bidirectionally connecting a cortical model to a realistic virtual arm, and using the system output to drive a robotic arm in real time. Our techniques are applicable to the future development of brain neuroprosthetic control systems, and may enable enhanced brain-machine interfaces with the possibility for finer control of limb prosthetics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4658435PMC
http://dx.doi.org/10.3389/fnbot.2015.00013DOI Listing

Publication Analysis

Top Keywords

virtual arm
28
arm
18
cortical model
16
robot arm
12
model
9
cortical spiking
8
spiking network
8
virtual
8
musculoskeletal arm
8
robotic arm
8

Similar Publications

When we touch ourselves, the pressure appears weaker compared to when someone else touches us, an effect known as sensory attenuation. Sensory attenuation is spatially tuned and does only occur if the positions of the touching and the touched body-party spatially coincide. Here, we ask about the contribution of visual or proprioceptive signals to determine self-touch.

View Article and Find Full Text PDF

Stretchable electronics have significant applications in wearable applications. However, the extremely low thermal conductivity of elastic encapsulation hinders heat dissipation, leading to performance degradation. For instance, stretchable thermoelectric devices (TEDs) can be used for skin temperature regulation, but poor thermal management limits their cooling performance.

View Article and Find Full Text PDF

Introduction: Upper limb (UL) impairment is common in people with multiple sclerosis (pwMS), and functional recovery of the UL is a key rehabilitation goal. Technology-based approaches, like virtual reality (VR), are increasingly promising. While most VR environments are task-oriented, our clinical approach integrates neuroproprioceptive 'facilitation and inhibition' (NFI) principles.

View Article and Find Full Text PDF

Enriching surgical theatre competence through computer-based simulation.

Radiography (Lond)

January 2025

UniSA Allied Health & Human Performance, University of South Australia, Adelaide, SA 5001, Australia.

Introduction: Radiographers support the multidisciplinary team by facilitating medical imaging within the operating theatre environment. This project aimed to enhance student readiness for clinical competency in operative theatre imaging by implementing an authentic C-arm simulator for students to use prior to attending clinical placement.

Methods: This study followed a pre-post, quantitative study design.

View Article and Find Full Text PDF

Background: To overcome the challenge of psychotherapist scarcity in applying pain psychotherapy in clinical practice, we developed a virtual reality (VR) program delivering weeks of pain psychotherapy without psychotherapists, with a focus on minimizing the risk of motion sickness.

Objectives: We conducted a single-arm pilot study to assess the efficacy and motion sickness associated with a VR session delivering guided imagery and breathing techniques selected from the initial course of our VR program, involving patients suffering from various acute and chronic pain.

Methods: Patients underwent a 15-min VR session.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!