Drosophila Bitter Taste(s).

Front Integr Neurosci

Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France ; AgroParisTech Paris, France.

Published: December 2015

Most animals possess taste receptors neurons detecting potentially noxious compounds. In humans, the ligands which activate these neurons define a sensory space called "bitter". By extension, this term has been used in animals and insects to define molecules which induce aversive responses. In this review, based on our observations carried out in Drosophila, we examine how bitter compounds are detected and if bitter-sensitive neurons respond only to molecules bitter to humans. Like most animals, flies detect bitter chemicals through a specific population of taste neurons, distinct from those responding to sugars or to other modalities. Activating bitter-sensitive taste neurons induces aversive reactions and inhibits feeding. Bitter molecules also contribute to the suppression of sugar-neuron responses and can lead to a complete inhibition of the responses to sugar at the periphery. Since some bitter molecules activate bitter-sensitive neurons and some inhibit sugar detection, bitter molecules are represented by two sensory spaces which are only partially congruent. In addition to molecules which impact feeding, we recently discovered that the activation of bitter-sensitive neurons also induces grooming. Bitter-sensitive neurons of the wings and of the legs can sense chemicals from the gram negative bacteria, Escherichia coli, thus adding another biological function to these receptors. Bitter-sensitive neurons of the proboscis also respond to the inhibitory pheromone, 7-tricosene. Activating these neurons by bitter molecules in the context of sexual encounter inhibits courting and sexual reproduction, while activating these neurons with 7-tricosene in a feeding context will inhibit feeding. The picture that emerges from these observations is that the taste system is composed of detectors which monitor different "categories" of ligands, which facilitate or inhibit behaviors depending on the context (feeding, sexual reproduction, hygienic behavior), thus considerably extending the initial definition of "bitter" tasting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4658422PMC
http://dx.doi.org/10.3389/fnint.2015.00058DOI Listing

Publication Analysis

Top Keywords

bitter-sensitive neurons
20
bitter molecules
16
neurons
11
taste neurons
8
neurons induces
8
activating neurons
8
sexual reproduction
8
molecules
7
bitter
7
bitter-sensitive
6

Similar Publications

The Lepidopteran Papilio hospiton uses only plants belonging to the Apiaceae and the Rutaceae families as hosts. Both adult females and larvae are equipped with gustatory receptor neurons (GRNs) capable of detecting sugars, bitters and salts, thus providing information for evaluating the chemical composition of the plant. Since the activation of these neurons may affect insect behavior, the aim of this study were: (a) to study the gustatory sensitivity of both females and larvae to the sap of two Apiaceae, Foeniculum vulgare (fennel) and Daucus carota (carrot), that are not used as host plants; (b) to cross-compare the spike activity evoked from these two plants with that evoked by Ferula communis (ferula), the host plant preferred by ovipositing females of P.

View Article and Find Full Text PDF

Drosophila has become an excellent model system for investigating the organization and function of the gustatory system due to the relatively simple neuroanatomical organization of its brain and the availability of powerful genetic and transgenic technology. Thus, at the molecular and cellular levels, a great deal of insight into the peripheral detection and coding of gustatory information has already been attained. In contrast, much less is known about the central neural circuits that process this information and induce behaviorally appropriate motor output.

View Article and Find Full Text PDF

The Role of Cholecystokinin in Peripheral Taste Signaling in Mice.

Front Physiol

October 2017

Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, Fukuoka, Japan.

Cholecystokinin (CCK) is a gut hormone released from enteroendocrine cells. CCK functions as an anorexigenic factor by acting on CCK receptors expressed on the vagal afferent nerve and hypothalamus with a synergistic interaction between leptin. In the gut, tastants such as amino acids and bitter compounds stimulate CCK release from enteroendocrine cells via activation of taste transduction pathways.

View Article and Find Full Text PDF

Bitter Taste Responses of Gustducin-positive Taste Cells in Mouse Fungiform and Circumvallate Papillae.

Neuroscience

January 2018

Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; Monell Chemical Senses Center, Philadelphia, PA, USA; Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, Japan.

Bitter taste serves as an important signal for potentially poisonous compounds in foods to avoid their ingestion. Thousands of compounds are estimated to taste bitter and presumed to activate taste receptor cells expressing bitter taste receptors (Tas2rs) and coupled transduction components including gustducin, phospholipase Cβ2 (PLCβ2) and transient receptor potential channel M5 (TRPM5). Indeed, some gustducin-positive taste cells have been shown to respond to bitter compounds.

View Article and Find Full Text PDF

Bitter-sensitive gustatory receptor neuron responds to chemically diverse insect repellents in the common malaria mosquito Anopheles quadrimaculatus.

Naturwissenschaften

June 2016

United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Invasive Insect Biocontrol and Behavior Laboratory, Bldg. 007, Rm. 030, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA.

Female mosquitoes feed on blood from animal hosts to obtain nutritional resources used for egg production. These contacts facilitate the spread of harmful human diseases. Chemical repellents are used to disrupt mosquito host-seeking and blood-feeding behaviors; however, little is known about the gustatory sensitivity of mosquitoes to known repellents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!