Early odor preference learning in rodents occurs within a sensitive period [≤postnatal day (P)10-12], during which pups show a heightened ability to form an odor preference when a novel odor is paired with a tactile stimulation (e.g., stroking). Norepinephrine (NE) release from the locus coeruleus during stroking mediates this learning. However, in older pups, stroking loses its ability to induce learning. The cellular and circuitry mechanisms underpinning the sensitive period for odor preference learning is not well understood. We first established the sensitive period learning model in mice - odor paired with stroking induced odor preference in P8 but not P14 mice. This learning was dependent on NE-β-adrenoceptors as it was prevented by propranolol injection prior to training. We then tested whether there are developmental changes in pyramidal cell excitability and NE responsiveness in the anterior piriform cortex (aPC) in mouse pups. Although significant differences of pyramidal cell intrinsic properties were found in two age groups (P8-11 and P14+), NE at two concentrations (0.1 and 10 μM) did not alter intrinsic properties in either group. In contrast, in P8-11 pups, NE at 0.1 μM presynaptically decreased miniature IPSC and increased miniature EPSC frequencies. These effects were reversed with a higher dose of NE (10 μM), suggesting involvement of different adrenoceptor subtypes. In P14+ pups, NE at higher doses (1 and 10 μM) acted both pre- and postsynaptically to promote inhibition. These results suggest that enhanced synaptic excitation and reduced inhibition by NE in the aPC network may underlie the sensitive period.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4652601PMC
http://dx.doi.org/10.3389/fncel.2015.00450DOI Listing

Publication Analysis

Top Keywords

odor preference
16
sensitive period
16
pyramidal cell
12
anterior piriform
8
piriform cortex
8
preference learning
8
odor paired
8
intrinsic properties
8
odor
6
learning
6

Similar Publications

Comparison of extraction and refinement techniques for volatile compound analysis in camellia oil.

Food Chem

December 2024

College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China. Electronic address:

The processing techniques of camellia oil, containing freshly squeezed (FSCO), refined (DFCO), cold-pressed (OFCO), and hot-pressed (RFCO), significantly influence flavor compounds and organoleptic properties. In this study, the preference for FSCO and RFCO was revealed by sensory evaluation due to the "fruity" and "roasted" flavors, respectively. Flavor differences among oils were accurately distinguished by the E-nose.

View Article and Find Full Text PDF

The transition between aquatic and terrestrial habitats leads to extreme structural changes in sensorial systems. Olfactory receptors (OR) are involved in the detection of odorant molecules both in water and on land. Therefore, ORs are affected by evolutionary habitat transitions experienced by organisms.

View Article and Find Full Text PDF

The optimum processing conditions for green laver chips were determined using response surface methodology (RSM) to improve taste and reduce off-flavors by applying reaction flavor and air-frying techniques. The optimum composition (/) for the chips included 20% green laver, 20% hairtail surimi, and 60% flour. Additional ingredients included distilled water (90 mL) with GDL (3 g), NaHCO₃ (2 g), salt (1 g), sugar (12 g), roasted soybean powder (1.

View Article and Find Full Text PDF

Background: Effective nutritional support is essential for maintaining good performance during exercise. Taste and olfaction are key senses for food intake, and understanding how their sensitivities change during exercise is important for effective nutritional support. However, the effects of exercise on taste and odor sensitivities remain unclear.

View Article and Find Full Text PDF

Disruption of the odorant receptor co-receptor (Orco) reveals its critical role in multiple olfactory behaviors of a cosmopolitan pest.

Insect Biochem Mol Biol

December 2024

State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China. Electronic address:

The olfactory system of insects plays a pivotal role in multiple, essential activities including feeding, mating, egg laying, and host localization. The capacity of odorant receptors to recognize odor molecules relies on odorant receptor co-receptors forming heterodimers. Here we report the successful engineering a homozygous mutant strain of diamondback moth (Plutella xylostella) in which the odorant receptor co-receptor PxOrco was silenced using CRISPR/Cas9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!