The expression of a viral microRNA is regulated by clustering to allow optimal B cell transformation.

Nucleic Acids Res

Pathogenesis of Virus Associated Tumors, German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany Inserm unit U1074, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany

Published: February 2016

The Epstein-Barr virus (EBV) transforms B cells by expressing latent proteins and the BHRF1 microRNA cluster. MiR-BHRF1-3, its most transforming member, belongs to the recently identified group of weakly expressed microRNAs. We show here that miR-BHRF1-3 displays an unusually low propensity to form a stem-loop structure, an effect potentiated by miR-BHRF1-3's proximity to the BHRF1 polyA site. Cloning miR-BHRF1-2 or a cellular microRNA, but not a ribozyme, 5' of miR-BHRF1-3 markedly enhanced its expression. However, a virus carrying mutated miR-BHRF1-2 seed regions expressed miR-BHRF1-3 at normal levels and was fully transforming. Therefore, miR-BHRF1-2's role during transformation is independent of its seed regions, revealing a new microRNA function. Increasing the distance between miR-BHRF1-2 and miR-BHRF1-3 in EBV enhanced miR-BHRF1-3's expression but decreased its transforming potential. Thus, the expression of some microRNAs must be restricted to a narrow range, as achieved by placing miR-BHRF1-3 under the control of miR-BHRF1-2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4756819PMC
http://dx.doi.org/10.1093/nar/gkv1330DOI Listing

Publication Analysis

Top Keywords

seed regions
8
mir-bhrf1-3
6
expression
4
expression viral
4
microrna
4
viral microrna
4
microrna regulated
4
regulated clustering
4
clustering allow
4
allow optimal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!