Unlabelled: Despite in vivo mapping of integrin αvβ3 expression being thoroughly investigated in recent years, its clinical value is still not well defined. For imaging of angiogenesis, the integrin subtype α5β1 appears to be a promising target, for which purpose we designed the PET radiopharmaceutical (68)Ga-aquibeprin.
Methods: (68)Ga-aquibeprin was obtained by click-chemistry (CuAAC) trimerization of a α5β1 integrin-binding pseudopeptide on the triazacyclononane-triphosphinate (TRAP) chelator, followed by automated (68)Ga labeling. Integrin α5β1 and αvβ3 affinities were determined in enzyme linked immune sorbent assay on immobilized integrins, using fibronectin and vitronectin, respectively, as competitors. M21 (human melanoma)-bearing severe combined immunodeficient mice were used for biodistribution, PET imaging, and determination of in vivo metabolization. The expression of α5 and β3 subunits was determined by immunohistochemistry on paraffin sections of M21 tumors.
Results: (68)Ga-aquibeprin shows high selectivity for integrin α5β1 (50% inhibition concentration [IC50] = 0.088 nM) over αvβ3 (IC50 = 620 nM) and a pronounced hydrophilicity (log D = -4.2). Severe combined immunodeficient mice xenografted with M21 human melanoma were found suitable for in vivo evaluation, as M21 immunohistochemistry showed not only an endothelial and strong cytoplasmatic expression of the β3 integrin subunit but also an intense expression of the α5 integrin subunit particularly in the endothelial cells of intratumoral small vessels. Ex vivo biodistribution (90 min after injection) showed high uptake in M21 tumor (2.42 ± 0.21 percentage injected dose per gram), fast renal excretion, and low background; tumor-to-blood and tumor-to-muscle ratios were 10.6 ± 2.5 and 20.9 ± 2.4, respectively. (68)Ga-aquibeprin is stable in vivo; no metabolites were detected in mouse urine, blood serum, kidney, and liver homogenates 30 min after injection. PET imaging was performed for (68)Ga-aquibeprin and the previously described, structurally related c(RGDfK) trimer (68)Ga-avebetrin, which shows an inverse selectivity for integrin αvβ3 (IC50 = 0.22 nM) over α5β1 (IC50 = 39 nM). In vivo target specificity was proven by cross-competition studies; tumor uptake of either tracer was not affected by the coadministration of 40 nmol (∼5 mg/kg) of the respective other compound.
Conclusion: (68)Ga-aquibeprin and (68)Ga-avebetrin are recommendable for complementary mapping of integrins α5β1 and αvβ3 by PET, allowing for future studies on the role of these integrins in angiogenesis, tumor progression, metastasis, and myocardial infarct healing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2967/jnumed.115.165720 | DOI Listing |
Neuroimage
January 2025
Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany. Electronic address:
Aim: Standardized evaluation of [F]PI-2620 tau-PET scans in 4R-tauopathies represents an unmet need in clinical practice. This study aims to investigate the effectiveness of visual evaluation of [F]PI-2620 images for diagnosing 4R-tauopathies and to develop a straight-forward reading algorithm to improve objectivity and data reproducibility.
Methods: A total of 83 individuals with [F]PI-2620 PET scans were included.
Radiother Oncol
January 2025
Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA; Department of Biomedical Engineering, Emory University and Georgia Institute of Technology Atlanta, GA 30308, USA. Electronic address:
Purpose: This study aims to develop a robust, large-scale deep learning model for medical image segmentation, leveraging self-supervised learning to overcome the limitations of supervised learning and data variability in clinical settings.
Methods And Materials: We curated a substantial multi-center CT dataset for self-supervised pre-training using masked image modeling with sparse submanifold convolution. We designed a series of Sparse Submanifold U-Nets (SS-UNets) of varying sizes and performed self-supervised pre-training.
Biophys Rep (N Y)
January 2025
UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA,; Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA,; Department of Physiology, University of California at Los Angeles, Los Angeles, CA 90095, USA,; California Nano Systems Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA,; Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
Membrane potential (MP) changes can provide a simple readout of bacterial functional and metabolic state or stress levels. While several optical methods exist for measuring fast changes in MP in excitable cells, there is a dearth of such methods for absolute and precise measurements of steady-state membrane potentials (MPs) in bacterial cells. Conventional electrode-based methods for the measurement of MP are not suitable for calibrating optical methods in small bacterial cells.
View Article and Find Full Text PDFBioorg Med Chem
January 2025
University/BHF Centre for Cardiovascular Sciences, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ UK; Edinburgh Imaging, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ UK. Electronic address:
Sphingosine-1-phosphate-5 receptors (S1P) are predominantly expressed in oligodendrocytes and as a result have been proposed as an important target in Multiple Sclerosis (MS). Selective S1P radiotracers could enable in vivo positron emission tomography (PET) imaging of oligodendrocytes activity. Here we report the synthesis, radiolabelling and first preclinical evaluation of the pharmacokinetics and binding properties of a lead 6-arylaminobenzamide derivative, 6-(mesitylamino)-2-methoxy-3-methylbenzamide (also named as TEFM180), as a potential core scaffold for development of novel S1P PET radiotracers.
View Article and Find Full Text PDFEur Radiol
January 2025
Department of Radiology, Montpellier Research Center Institute, PINKCC Laboratory, Montpellier, France.
Objective: To provide up-to-date European Society of Urogenital Radiology (ESUR) guidelines for staging and follow-up of patients with ovarian cancer (OC).
Methods: Twenty-one experts, members of the female pelvis imaging ESUR subcommittee from 19 institutions, replied to 2 rounds of questionnaires regarding imaging techniques and structured reporting used for pre-treatment evaluation of OC patients. The results of the survey were presented to the other authors during the group's annual meeting.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!