The crystal structures of inorganic homoleptic metal borohydrides are analysed with respect to their structural prototypes found amongst metal oxides in the inorganic databases such as Pearson's Crystal Data [Villars & Cenzual (2015). Pearson's Crystal Data. Crystal Structure Database for Inorganic Compounds, Release 2014/2015, ASM International, Materials Park, Ohio, USA]. The coordination polyhedra around the cations and the borohydride anion are determined, and constitute the basis of the structural systematics underlying metal borohydride chemistry in various frameworks and variants of ionic packing, including complex anions and the packing of neutral molecules in the crystal. Underlying nets are determined by topology analysis using the program TOPOS [Blatov (2006). IUCr CompComm. Newsl. 7, 4-38]. It is found that the Pauling rules for ionic crystals apply to all non-molecular borohydride crystal structures, and that the latter can often be derived by simple deformation of the close-packed anionic lattices c.c.p. and h.c.p., by partially removing anions and filling tetrahedral or octahedral sites. The deviation from an ideal close packing is facilitated in metal borohydrides with respect to the oxide due to geometrical and electronic considerations of the BH4(-) anion (tetrahedral shape, polarizability). This review on crystal chemistry of borohydrides and their similarity to oxides is a contribution which should serve materials engineers as a roadmap to design new materials, synthetic chemists in their search for promising compounds to be prepared, and materials scientists in understanding the properties of novel materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S2052520615018508 | DOI Listing |
Discov Nano
January 2025
Mizan-Tepi University, Tepi, Ethiopia.
Integrating noble metal nanostructures, specifically silver nanoparticles, into sensor designs has proven to enhance sensor performance across key metrics, including response time, stability, and sensitivity. However, a critical gap remains in understanding the unique contributions of various synthesis parameters on these enhancements. This study addresses this gap by examining how factors such as temperature, growth time, and choice of capping agents influence nanostructure shape and size, optimizing sensor performance for diverse conditions.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Materials Science, Fudan University, Shanghai 200433, China.
Borohydrides, known for ultrahigh hydrogen density, are promising hydrogen storage materials but typically require high operating temperatures due to their strong thermodynamic stability. Here we introduce a novel light-induced destabilization mechanism for hydrogen storage reaction of borohydrides under ambient conditions photogenerated vacancies in LiH. These vacancies thermodynamically destabilize B-H bonds through the spontaneous "strong adsorption" of BH groups, which trigger an asymmetric redistribution of electrons, enabling hydrogen release at near room temperature, approximately 300 °C lower than the corresponding thermal process.
View Article and Find Full Text PDFMolecules
December 2024
College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, National Innovation Center for Industry-Education Integration of Energy Storage Technology, Chongqing University, Chongqing 400044, China.
Lithium borohydride (LiBH) has emerged as a promising hydrogen storage material due to its exceptional theoretical hydrogen capacity (18.5 wt.%).
View Article and Find Full Text PDFInorg Chem
December 2024
Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, Karlsruhe 76131, Germany.
A series of seven-coordinated monoporphyrinate rare-earth(III) complexes featuring a novel tripodal tin-chelated trisphosphineoxide scorpionate ligand with the general formula [(TPP)Ln(PPhO)Sn] (Ln = Y, La, Dy, Er, Ho, Yb; TPP = 5,10,15,20-tetraphenylporphyrinate) were synthesized by reactions of the potassium tripodal scorpionate ligand [Sn(PPhO)K] with porphyrinate rare-earth metal chlorides [(TPP)LnCl(dme)] (Ln = Y, Dy, Er, Ho, Yb) or porphyrinate lanthanum borohydride [(TPP)LaBH(thf)]. The complexes were characterized by single-crystal X-ray diffraction, NMR spectroscopy, and ion mobility mass spectrometry. All complexes emit weak red TPP-based fluorescence, accompanied by near-infrared emission of Er, Ho (rather weak), and Yb (relatively intense with a quantum yield of 1% in dichloromethane solution) of the corresponding complexes.
View Article and Find Full Text PDFACS Omega
December 2024
Chemistry Department, College of Science, Bahir Dar University, PO Box 79 Bahir Dar, Ethiopia.
Water contamination by nitro compounds from various industrial processes has significantly contributed to environmental pollution and severely threatened aquatic ecosystems. Inexpensive, efficient, and environmentally benign catalysts are required for the catalytic reduction of such nitro compounds. This study reports the fabrication of various nanocomposites (NCs) of copper oxide nanoparticles (CuO NPs) supported on a kaolin sheet using straightforward and simple one-pot synthesis procedures that control the metal precursor to kaolin ratios.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!