Ratio of percentage depth dose (PDD) at two depths, PDD at a depth of 10 cm (PDD10), and beam flatness are monitored regularly for radiotherapy beams for quality assurance. The purpose of this study is to understand the effects of changes in one of these parameters on the other. Is it possible to monitor only the beam flatness and not PDD? The investigation has two components. Naturally occurring i.e., unintended changes in PDD ratio and in-plane flatness for 6 and 10 MV photon beams for one particular Siemens Artiste Linac are monitored for a period of about 4 years. Secondly, deliberate changes in the beam parameters are induced by changing the bending magnet current (BMI). Relationships between various beam parameters for unintended changes as well as deliberate changes are characterized. Long term unintentional changes of PDD ratio are found to have no systematic trend. The flatness in the inplane direction for 6 and 10 MV beams show slow increase of 0.43 and 0.75% respectively in about 4 years while the changes in the PDD ratio show no such trend. Over 10% changes in BMI are required to induce changes in the beam quality indices at 2% level. PDD ratio for the 10 MV beam is found to be less sensitive, while the depth of maximum dose, d(max), is more sensitive to the changes in BMI compared to the 6 MV beam. Tolerances are more stringent for PDD10 than PDD ratio for the 10 MV beam. PDD ratio, PDD10, and flatness must be monitored independently. Furthermore, off axis ratio alone cannot be used to monitor flatness. The effect of beam quality change in the absolute dose is clinically insignificant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814307 | PMC |
http://dx.doi.org/10.1007/s13246-015-0408-8 | DOI Listing |
Neuroimage Clin
December 2024
Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. Electronic address:
Background: Lewy body disorders (LBD), encompassing Parkinson disease (PD), PD dementia (PDD), and dementia with Lewy bodies (DLB), are characterized by alpha-synuclein pathology but often are accompanied by Alzheimer's disease (AD) neuropathological change (ADNC). The medial temporal lobe (MTL) is a primary locus of tau accumulation and associated neurodegeneration in AD. However, it is unclear the extent to which AD copathology in LBD (LBD/AD+) contributes to MTL-specific patterns of degeneration.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
December 2024
Department of Urology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan. Electronic address:
Background: To investigate variations in diagnostic performance of photodynamic diagnosis (PDD) according to surgical experience.
Methods: Data were extracted from patients having pT1 or lower primary tumors that underwent PDD-assisted transurethral resection of bladder tumors (TURBT) with orally 5-amibolevulinic acid at our institute. Surgical experience was categorized by urological experience (first-year and second-year) and PDD experience (<10, 10-19, and ≥20 cases).
J Med Phys
September 2024
Department of Physics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines.
Aims: The objective was to validate the initial beam parameters of the Davao Doctors Hospital's 6 MV Elekta Synergy Platform linac, which performs to the specification of the commissioning data per our records using the gamma-index analysis toolkit integrated inside PRIMO software.
Materials And Methods: In PRIMO, a sequence of optimization processes is performed, in which the measured and simulated percent depth dose (PDD) and lateral beam profiles at various depths are compared, using the stringent gamma-index passing rate at 1%/1 mm criteria (GPR11). Using four fields of sizes 3 cm × 3 cm, 4 cm × 4 cm, 5 cm × 5 cm, and 10 cm × 10 cm, the dose is calculated on a water phantom measuring 16.
Med Phys
November 2024
Institut Curie, PSL Research University, Radiation Oncology Department, Proton Therapy Centre, Centre Universitaire, Orsay, France.
Background: Ultra-high dose rate (UHDR/FLASH) irradiations, along with particle minibeam therapy (PMBT) are both emerging as promising alternatives to current radiotherapy techniques thanks to their improved healthy tissue sparing and similar tumor control.
Purpose: Monte Carlo (MC) modeling of a commercial machine delivering 5-7 MeV electrons at UHDR. This model was used afterward to compare measurements against simulations for an experimental setup combining both FLASH and PMBT modalities.
Neurol Sci
October 2024
Department of Neurology, University of Health Sciences, Fatih Sultan Mehmet Research and Training Hospital, Hastane Sok. No: 1/8 Içerenköy - Ataşehir, Istanbul, 34752, Turkey.
Introduction: Metabolic syndrome (MetS) manifests resembling pathophysiological mechanisms with Parkinson's disease (PD). Current research on the overall population has emphasized MetS as a freestanding risk factor for cognition. This research aims to explore the impact of MetS on cognition in Parkinson's patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!