Surface modification is a critical issue in various applications of polydimethylsiloxane (PDMS)-based microfluidic devices. Here, we describe a novel method through which PDMS-based microchannels were successfully modified with fragmented poly(l-lactic acid) (PLLA) nanosheets through a simple patchwork technique that exploited the high level of adhesiveness of PLLA nanosheets. Compared with other surface modification methods, our method required neither complicated chemical modifications nor the use of organic solvents that tend to cause PDMS swelling. The experimental results indicated that the modified PDMS exhibited excellent capacity for preventing the adhesion and activation of platelets. This simple yet efficient method can be used to fabricate the special PDMS microfluidic devices for biological, medical, and even hematological purposes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654732 | PMC |
http://dx.doi.org/10.1063/1.4936350 | DOI Listing |
J Am Chem Soc
January 2025
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.
A prevalent challenge in particulate photocatalytic water splitting lies in the fact that while numerous photocatalysts exhibit outstanding hydrogen evolution reaction (HER) activity in organic sacrificial reagents, their performance diminishes markedly in a Z-scheme water splitting system using electronic mediators. This underlying reason remains undefined, posing a long-standing issue in photocatalytic water splitting. Herein, we unveiled that the primary reason for the decreased HER activity in electronic mediators is due to the strong adsorption of shuttle ions on cocatalyst surfaces, which inhibits the initial proton reduction and results in a severe backward reaction of the oxidized shuttle ions.
View Article and Find Full Text PDFOphthalmic Physiol Opt
January 2025
Contact Lens and Visual Optics Laboratory, Optometry and Vision Science, Centre for Vision and Eye Research, Queensland University of Technology, Brisbane, Queensland, Australia.
Introduction: Tear exchange during contact lens wear is essential for ocular surface integrity, facilitating debris removal, and maintaining corneal metabolism. Fluorophotometry and fluorogram methods are typically used to measure tear exchange, which require hardware modifications to a slit lamp biomicroscope. This manuscript introduces an alternative method using a corneoscleral profilometer, the Eye Surface Profiler (ESP), to quantify tear exchange during corneal and scleral rigid lens wear by assessing fluorescence intensity changes over time.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States.
Modification of silica interfaces by covalent attachment of functional ligands is a primary means of controlling the interfacial chemistry of porous silicas used in separations, environmental cleanup, and biosensing. Recently, modification of hydrophobic, -alkyl-silane-functionalized interfaces has been achieved through self-assembly of zwitterionic phospholipids or mixed-charged surfactants to form "hybrid bilayers", producing interfaces that mimic lipid-bilayer partitioning and provide shape-selective partitioning of aromatic hydrocarbons. Charged headgroups, however, introduce electrostatic interactions that strongly influence the retention of ionizable solutes and require careful control over pH and ionic strength in the solution phase.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Food Toxicology and Contaminant, National Research Centre, Dokki, Giza, Egypt.
This study evaluates the potential of ozonated corn starch (OCS) and ultrasonicated ozonated corn starch (USOCS) as adsorbents for patulin removal in buffer solutions. The results indicated that dual modification significantly altered the starch's structure, introducing functional groups such as carbonyl and carboxyl groups, and increasing its surface area. These modifications led to enhanced patulin adsorption capacity.
View Article and Find Full Text PDFSci Rep
January 2025
School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China.
With the advancement of ecological and environmental protection construction, the research on the modification of expansive soil using environmentally friendly polymers can make up for the harm to the ecological environment caused by traditional modification. Mechanical and microscopic properties of modified expansive soils were analyzed through indoor tests. The results showed that the liquid limit and plasticity index decreased by 52.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!