Background: Calcium electroporation describes the use of high voltage electric pulses to introduce supraphysiological calcium concentrations into cells. This promising method is currently in clinical trial as an anti-cancer treatment. One very important issue is the relation between tumor cell kill efficacy-and normal cell sensitivity.

Methods: Using a 3D spheroid cell culture model we have tested the effect of calcium electroporation and electrochemotherapy using bleomycin on three different human cancer cell lines: a colorectal adenocarcinoma (HT29), a bladder transitional cell carcinoma (SW780), and a breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibroblasts (HDF-n).

Results: The results showed a clear reduction in spheroid size in all three cancer cell spheroids three days after treatment with respectively calcium electroporation (p<0.0001) or electrochemotherapy using bleomycin (p<0.0001). Strikingly, the size of normal fibroblast spheroids was neither affected after calcium electroporation nor electrochemotherapy using bleomycin, indicating that calcium electroporation, like electrochemotherapy, will have limited adverse effects on the surrounding normal tissue when treating with calcium electroporation. The intracellular ATP level, which has previously been shown to be depleted after calcium electroporation, was measured in the spheroids after treatment. The results showed a dramatic decrease in the intracellular ATP level (p<0.01) in all four spheroid types-malignant as well as normal.

Conclusion: In conclusion, calcium electroporation seems to be more effective in inducing cell death in cancer cell spheroids than in a normal fibroblast spheroid, even though intracellular ATP level is depleted in all spheroid types after treatment. These results may indicate an important therapeutic window for this therapy; although further studies are needed in vivo and in patients to investigate the effect of calcium electroporation on surrounding normal tissue when treating tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4669124PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144028PLOS

Publication Analysis

Top Keywords

calcium electroporation
16
cell lines
8
cancer cell
8
cell
7
calcium
5
electroporation evidence
4
evidence differential
4
differential effects
4
effects normal
4
normal malignant
4

Similar Publications

The primary method of treatment for patients suffering from drug-resistant focal-onset epilepsy is resective surgery, which adversely impacts neurocognitive function. Radio frequency (RF) ablation and laser ablation are the methods with the most promise, achieving seizure-free rates similar to resection but with less negative impact on neurocognitive function. However, there remains a number of concerns and open technical questions about these two methods of thermal ablation, with the primary ones: (1) heating; (2) hemorrhage and bleeding; and (3) poor directionality.

View Article and Find Full Text PDF

Calcium electroporation (CaEP) is an efficient approach for ovarian cancer treatment. It causes cell death by introducing elevated levels of calcium into cells. In this work, the research focused on two types of cell lines: CHO-K1, representing normal ovary cells, and OvBH-1, representing ovarian clear carcinoma cells.

View Article and Find Full Text PDF

Reversible Electroporation for Cancer Therapy.

Br J Radiol

November 2024

Department of Diagnostic and Interventional Radiology, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, LS9 7TF.

Reversible electroporation refers to the use of high voltage electrical pulses on tissues to increase cell membrane permeability. It allows targeted delivery of high concentrations of chemotherapeutic agents including cisplatin and bleomycin, a process known as electrochemotherapy (ECT). It can also be used to deliver toxic concentrations of calcium and gene therapies that stimulate an anti-tumour immune response.

View Article and Find Full Text PDF

Enhancing lung cancer growth inhibition with calcium ions: Role of mid- and high-frequency electric field pulses.

Biomed Pharmacother

December 2024

Wroclaw Medical University, Faculty of Pharmacy, Department of Molecular and Cellular Biology, Wroclaw, Poland; Medical University Hospital, Wroclaw, Poland. Electronic address:

Calcium electroporation (CaEP) involves the combination of calcium ions with electroporation, which is induced by pulsed electric fields (PEFs). This study explores the application of high-frequency unipolar nanosecond pulsed electric fields (nsPEFs: 8-14 kV/cm, 200 ns, 10 kHz, 100 kHz, 1 MHz repetition frequency pulse bursts, n = 100) and their potential in inhibiting lung cancer cell growth. As a reference, standard microsecond range parametric protocols were used (100 µs x 8 pulses).

View Article and Find Full Text PDF
Article Synopsis
  • - This study examines how complex cellular structures, specifically Jurkat cells with features like the endoplasmic reticulum and mitochondria, respond to external electric pulses by modeling transmembrane potential and electroporation.
  • - Simulations reveal that electroporation requires a stronger electric field for the endoplasmic reticulum compared to the inner mitochondrial membrane, which is more susceptible to poration, and may be linked to increased intracellular calcium levels.
  • - The research also explores how repeated electric pulses and electrode placement enhance membrane poration, while acknowledging that although more complex models could improve accuracy, basic trends in findings are likely to persist.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!