The triacylglycerol (TAG) structure and the regio-stereospecific distribution of fatty acids (FA) of seed oils from most of the Apiaceae family are not well documented. The TAG structure ultimately determines the final physical properties of the oils and the position of FAs in the TAG molecule affects the digestion; absorption and metabolism; and physical and technological properties of TAGs. Fixed oils from the fruits of dill (Anethum graveolens), caraway (Carum carvi), cumin (Cuminum cyminum), coriander (Coriandrum sativum), anise (Pimpinella anisum), carrot (Daucus carota), celery (Apium graveolens), fennel (Foeniculum vulgare), and Khella (Ammi visnaga), all from the Apiaceae family, were extracted at room temperature in chloroform/methanol (2:1 v/v) using percolators. Crude lipids were fractionated by solid phase extraction to separate neutral triacylglycerols (TAGs) from other lipids components. Neutral TAGs were subjected to transesterification process to convert them to their corresponding fatty acids methyl esters (FAMES) using 1% boron trifluoride (BF₃) in methanol. FAMES were analyzed by gas chromatography-quadrupole time of flight (GC-QTOF) mass spectrometry. Triglycerides were analyzed using high performance liquid chromatography-quadrupole time of flight (LC-QTOF) mass spectrometry. Petroselinic acid was the major fatty acid in all samples ranging from 57% of the total fatty acids in caraway up to 82% in fennel. All samples contained palmitic (16:0), palmitoleic (C16:1n-9), stearic (C18:0), petroselinic (C18:1n-12), linoleic (C18:2n-6), linolinic (18:3n-3), and arachidic (C20:0) acids. TAG were analyzed using LC-QTOF for accurate mass identification and mass spectrometry/mass spectrometry (MS/MS) techniques for regiospesific elucidation of the identified TAGs. Five major TAGs were detected in all samples but with different relative concentrations in all of the tested samples. Several other TAGs were detected as minor components and were present in some samples and absence in the others. Regiospecific analysis showed a non-random fatty acids distribution. Petroselinic acid was predominantly located at the sn-1 and sn-3 positions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4881421 | PMC |
http://dx.doi.org/10.3390/molecules201219779 | DOI Listing |
Inn Med (Heidelb)
January 2025
Lehrstuhl für Ernährung und Immunologie, School of Life Sciences, Technische Universität München, Gregor-Mendel-Straße 2, 85354, Freising, Deutschland.
Background: The intestinal microbiota comprises all living microorganisms in the gastrointestinal tract and is crucial for its function. Clinical observations and laboratory findings confirm a central role of the microbiota in chronic inflammatory bowel diseases (IBD). However, many mechanistic details remain unclear.
View Article and Find Full Text PDFSci Rep
January 2025
College of Animal Science and Technology, Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia University, Yinchuan, 750021, China.
Currently, the identification of valuable candidate genes affecting milk fat synthesis in dairy cows is still limited, and the specific regulatory mechanism is still unknown. In this study, we used primary bovine mammary epithelial cells(BMECs)as a model and utilized overexpression and knockdown techniques for the PI4K2A gene to investigate the specific mechanisms by which it regulates lipid metabolism in BMECs. We studied whether PI4K2A regulates the inhibition of trans-10, cis-12 conjugated linoleic acid (t10,c12-CLA) on lipid synthesis in BMECs.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Internal Medicine, Afzalipour Faculty of Medicine, Afzalipour Hospital Research Center, Kerman University of Medical Sciences, Kerman, Iran.
Inflammation and oxidative stress play a pivotal role in COPD pathogenesis. Free fatty acids (FFA) as signaling molecules through a series of G-proteins coupled receptors, play an important role in regulation of the immune system and oxidative stress. For this reason, we decided to investigate the profile of FFA in the plasma in the COPD patients.
View Article and Find Full Text PDFIntroduction: Adverse exposures in utero might cause adaptations of cardiovascular and metabolic organ development, predisposing individuals to an adverse cardio-metabolic risk profile from childhood onwards. We hypothesized that adaptations in metabolic pathways underlie these associations and examined associations of metabolite profiles at birth with childhood cardio-metabolic risk factors.
Methods: The study included 763 mother-child pairs participating in an ongoing population-based prospective cohort study with an overall low disease risk.
Sci Rep
January 2025
School of Sports and Health, Nanjing Sport Institute, Nanjing, China.
Mitochondrial function is crucial for hepatic lipid metabolism. Current research identifies two types of mitochondria based on their contact with lipid droplets: peridroplet mitochondria (PDM) and cytoplasmic mitochondria (CM). This work aimed to investigate the alterations of CM and PDM in metabolic dysfunction-associated steatotic liver disease (MASLD) induced by spontaneous type-2 diabetes mellitus (T2DM) in db/db mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!