Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
More than 50% of terrestrially-derived organic carbon (terrOC) flux from the continents to the ocean is remineralised in the coastal zone despite its perceived high refractivity. The efficient degradation of terrOC in the marine environment could be fuelled by labile marine-derived material, a phenomenon known as "priming effect", but experimental data to confirm this mechanism are lacking. We tested this hypothesis by treating coastal sediments with 13C-lignocellulose, as a proxy for terrOC, with and without addition of unlabelled diatom detritus that served as the priming inducer. The occurrence of priming was assessed by the difference in lignocellulose mineralisation between diatom-amended treatments and controls in aerobic sediment slurries. Priming of lignocellulose degradation was observed only at the initial stages of the experiment (day 7) and coincided with overall high microbial activity as exemplified by total CO2 production. Lignocellulose mineralisation did not differ consistently between diatom treatments and control for the remaining experimental time (days 14-28). Based on this pattern, we hypothesize that the faster initiation of lignocellulose mineralisation in diatom-amended treatments is attributed to the decomposition of accessible polysaccharide components within the lignocellulose complex by activated diatom degraders. The fact that diatom-degraders contributed to lignocellulose degradation was also supported by the different patterns in 13C-enrichment of phospholipid fatty acids between treatments. Although we did not observe differences between treatments in the total quantity of respired lignocellulose at the end of the experiment, differences in timing could be important in natural ecosystems where the amount of time that a certain compound is subject to aerobic degradation before burial to deeper anoxic sediments may be limited.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4669084 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0143917 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!