A variety of cellular pathways are regulated by protein modifications with ubiquitin-family proteins. SUMO, the Small Ubiquitin-like MOdifier, is covalently attached to lysine on target proteins via a cascade reaction catalyzed by E1, E2, and E3 enzymes. A major barrier to understanding the diverse regulatory roles of SUMO has been a lack of suitable methods to identify protein sumoylation sites. Here we developed a mass-spectrometry (MS) based approach combining chemical and enzymatic modifications to identify sumoylation sites. We applied this method to analyze the auto-sumoylation of the E1 enzyme in vitro and compared it to the GG-remnant method using Smt3-I96R as a substrate. We further examined the effect of smt3-I96R mutation in vivo and performed a proteome-wide analysis of protein sumoylation sites in Saccharomyces cerevisiae. To validate these findings, we confirmed several sumoylation sites of Aos1 and Uba2 in vivo. Together, these results demonstrate that our chemical and enzymatic method for identifying protein sumoylation sites provides a useful tool and that a combination of methods allows a detailed analysis of protein sumoylation sites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4669148 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0143810 | PLOS |
Chem Sci
December 2024
State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
Small ubiquitin-like modifier (SUMO) plays a pivotal role in diverse cellular processes and is implicated in diseases such as cancer and neurodegenerative disorders. However, large-scale identification of endogenous SUMO-1 faces challenges due to limited enrichment methods and its lower abundance compared to SUMO-2/3. Here we propose a novel combinatorial peptide strategy, combined with anti-adhesive polymer development, to enrich endogenous SUMO-1 modified peptides, revealing a comprehensive SUMOylation landscape.
View Article and Find Full Text PDFGlycoconj J
January 2025
Department of Orthopaedics, Nanchang People's Hospital (The Third Hospital of Nanchang), Nanchang City, Jiangxi Province, China.
Reduction of glucose transporter 1 (GLUT1), even deletion, may results in cartilage fibrosis and osteoarthritis. This study aims to investigate the SUMOylation of GLUT1 in osteoarthritis through small ubiquitin-like modifier 1(SUMO1), and explore the role of SUMOylated GLUT1 in glycometabolism, proliferation and apoptosis in chondrocytes. Human chondrocytes were incubated with 10 ng/mL of IL-1β to mimic osteoarthritis in vitro.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392, Giessen, Germany.
Post-translational modifications (PTMs) are implicated in many biological processes including receptor activation, signal transduction, transcriptional regulation and protein turnover. Lysine's side chain is particularly notable, as it can undergo methylation, acetylation, SUMOylation and ubiquitination. Methylation affects not only lysine but also arginine residues, both of which are implicated in epigenetic regulation.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
Epigenomes
November 2024
KNU G-LAMP Project Group, KNU Institute of Basic Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
Cryptic transcription refers to the unintended expression of non-canonical sites within the genome, producing aberrant RNA and proteins that may disrupt cellular functions. In this opinion piece, I will explore the role of histone modifications in modulating cryptic transcription and its implications for gene expression and cellular integrity, particularly with a focus on H3K36 and H3K4 methylation marks. H3K36 tri-methylation plays a crucial role in maintaining chromatin integrity by facilitating the recruitment of the Rpd3S histone deacetylase (HDAC) complex, which helps restore closed chromatin states following transcription and prevents cryptic initiation within gene bodies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!