A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Simple and Effective Way for Data Preprocessing Selection Based on Design of Experiments. | LitMetric

The selection of optimal preprocessing is among the main bottlenecks in chemometric data analysis. Preprocessing currently is a burden, since a multitude of different preprocessing methods is available for, e.g., baseline correction, smoothing, and alignment, but it is not clear beforehand which method(s) should be used for which data set. The process of preprocessing selection is often limited to trial-and-error and is therefore considered somewhat subjective. In this paper, we present a novel, simple, and effective approach for preprocessing selection. The defining feature of this approach is a design of experiments. On the basis of the design, model performance of a few well-chosen preprocessing methods, and combinations thereof (called strategies) is evaluated. Interpretation of the main effects and interactions subsequently enables the selection of an optimal preprocessing strategy. The presented approach is applied to eight different spectroscopic data sets, covering both calibration and classification challenges. We show that the approach is able to select a preprocessing strategy which improves model performance by at least 50% compared to the raw data; in most cases, it leads to a strategy very close to the true optimum. Our approach makes preprocessing selection fast, insightful, and objective.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.5b02832DOI Listing

Publication Analysis

Top Keywords

preprocessing selection
16
preprocessing
10
simple effective
8
design experiments
8
selection optimal
8
optimal preprocessing
8
preprocessing methods
8
approach preprocessing
8
model performance
8
preprocessing strategy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!