Uranium (as UO2(2+)), technetium (as TcO4(-)) and neptunium (as NpO2(+)) are highly mobile radionuclides that can be reduced enzymatically by a range of anaerobic and facultatively anaerobic microorganisms, including Shewanella oneidensis MR-1, to poorly soluble species. The redox chemistry of Pu is more complicated, but the dominant oxidation state in most environments is highly insoluble Pu(IV), which can be reduced to Pu(III) which has a potentially increased solubility which could enhance migration of Pu in the environment. Recently it was shown that flavins (riboflavin and flavin mononucleotide (FMN)) secreted by Shewanella oneidensis MR-1 can act as electron shuttles, promoting anoxic growth coupled to the accelerated reduction of poorly-crystalline Fe(III) oxides. Here, we studied the role of riboflavin in mediating the reduction of radionuclides in cultures of Shewanella oneidensis MR-1. Our results demonstrate that the addition of 10 μM riboflavin enhances the reduction rate of Tc(VII) to Tc(IV), Pu(IV) to Pu(III) and to a lesser extent, Np(V) to Np(IV), but has no significant influence on the reduction rate of U(VI) by Shewanella oneidensis MR-1. Thus riboflavin can act as an extracellular electron shuttle to enhance rates of Tc(VII), Np(V) and Pu(IV) reduction, and may therefore play a role in controlling the oxidation state of key redox active actinides and fission products in natural and engineered environments. These results also suggest that the addition of riboflavin could be used to accelerate the bioremediation of radionuclide-contaminated environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4dt02929a | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
A biofuel cell is an electrochemical device using exoelectrogen or biocatalysts to transfer electrons from redox reactions to the electrodes. While wild-type microbes and natural enzymes are often employed as exoelectrogen and biocatalysts, genetically engineered or modified organisms have been developed to enhance exoelectrogen activity. Here, we demonstrated a redox-enzyme integrated microbial fuel cell (REI-MFC) design based on an exoelectrogen-enhancing strategy that reinforces the electrogenic activity of MR1 by displaying an extra redox enzyme on the cell surface.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
Uranium is the primary fuel for nuclear energy, critical for sustainable, carbon-neutral energy transitions. However, limited terrestrial resources and environmental risks from uranium contamination require innovative immobilization and recovery solutions. In this work, we present a novel uranium recovery method using programmable electroactive living materials (ELMs).
View Article and Find Full Text PDFJ Environ Manage
December 2024
College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China. Electronic address:
Bioelectrochemical technology emerges as a promising approach for addressing the challenge of antibiotic residue contamination. This research innovated by incorporating in-situ self-assembled gold nanoparticles (Au-NPs) and reduced graphene oxide (rGO) into a co-cultured electroactive biofilm (EAB) of Raoultella sp. DB-1 and Shewanella oneidensis MR-1 (Au-rGO@R/S-C).
View Article and Find Full Text PDFBiofilm
December 2024
EPHE, PSL, UMR CNRS 7564, LCPME, F-54000, Nancy, France.
Understanding pioneer bacterial adhesion is essential to appreciate bacterial colonization and consider appropriate control strategies. This bacterial entrapment at the wall is known to be controlled by many physical, chemical or biological factors, including hydrodynamic conditions. However, due to the nature of early bacterial adhesion, i.
View Article and Find Full Text PDFBioelectrochemistry
November 2024
Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!