Ab initio alpha-alpha scattering.

Nature

Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany.

Published: December 2015

Processes such as the scattering of alpha particles ((4)He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei--nuclei with even and equal numbers of protons and neutrons--is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the 'adiabatic projection method' to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of quarks and gluons.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature16067DOI Listing

Publication Analysis

Top Keywords

alpha particles
12
alpha-alpha scattering
8
scattering alpha
8
alpha capture
8
capture carbon
8
carbon oxygen
8
particles alpha-like
8
computational operations
8
monte carlo
8
carlo simulations
8

Similar Publications

This study synthesizes a novel three-dimensional (3D) porous coordination polymer (CP), {[Co(L)₀.₅(H₂O)]·NMP·H₂O} (1), via a solvothermal method in a mixed solvent of water and NMP (1-methyl-2-pyrrolidinone), reacting Co(II) ions with H₄L (1,4-bis(5,6-carboxybenzimidazolylmethyl)benzene). The CP exhibits unique fluorescence properties, emitting at 420 nm under UV light excitation at 350 nm, and serves as a carrier for Mesalazine (MSZ) in therapeutic applications.

View Article and Find Full Text PDF

Centimeter-Sized CsPbBr Single-Crystal Films for Energy-Resolved Radiation Detection.

ACS Appl Mater Interfaces

January 2025

Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.

Metal halide perovskites (MHPs) are promising materials for radiation detection. Compared with polycrystalline films, single crystals (SCs) have lower defect density, higher carrier mobility, and lifetime. However, the direct synthesis of MHP SCs for large-area flat panel imaging detectors remains challenging.

View Article and Find Full Text PDF

Hydroxyapatite (HAP) is a well-known medically renowned bioactive material known for its excellent biocompatibility and mechanical stability, but it lacks fast bioactivity. The restricted release of ions from hydroxyapatite encourages the search for a faster bioactive material that could replicate other properties of HAP. A new sol-gel-mediated potentially bioactive glass material that could mimic the structure of HAP but can surpass the performance of HAP bioactively has been formulated in this study.

View Article and Find Full Text PDF

In the present study, the stability of a supersaturated solution of indomethacin (IM) was evaluated in hydrophobically modified hydroxypropylmethylcellulose (HM-HPMC) solutions, with and without parent cyclodextrins (CDs). A highly supersaturated state of IM was maintained in the HM-HPMC solution and was further stabilized by the addition of α-CD and β-CD. Notably, the highest level of supersaturation was achieved in HM-HPMC/α-CD solution, which maintained a high concentration of IM for up to 120 h.

View Article and Find Full Text PDF

The conductivity of AgNWs electrodes can be enhanced by incorporating Ag grids, thereby facilitating the development of large-area flexible organic solar cells (FOSCs). Ag grids from vacuum evaporation offer the advantages of simple film formation, adjustable thickness, and unique structure. However, the complex 3D multi-component structure of AgNWs electrodes will exacerbate the aggregation of large Ag particles, causing the device short circuits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!