The outstanding elasticity, excellent resilience at high-frequency, and hydrophilic capacity of natural resilin have motivated investigations of recombinant resilin-based biomaterials as a new class of bio-elastomers in the engineering of mechanically active tissues. Accordingly, here the comprehensive characterization of modular resilin-like polypeptide (RLP) hydrogels is presented and their suitability as a novel biomaterial for in vivo applications is introduced. Oscillatory rheology confirmed that a full suite of the RLPs can be rapidly cross-linked upon addition of the tris(hydroxymethyl phosphine) cross-linker, achieving similar in situ shear storage moduli (20 k ± 3.5 Pa) across various material compositions. Uniaxial stress relaxation tensile testing of hydrated RLP hydrogels under cyclic loading and unloading showed negligible stress reduction and hysteresis, superior reversible extensibility, and high resilience with Young's moduli of 30 ± 7.4 kPa. RLP hydrogels containing MMP-sensitive domains are susceptible to enzymatic degradation by matrix metalloproteinase-1 (MMP-1). Cell culture studies revealed that RLP-based hydrogels supported the attachment and spreading (2D) of human mesenchymal stem cells and did not activate cultured macrophages. Subcutaneous transplantation of RLP hydrogels in a rat model, which to our knowledge is the first such reported in vivo analysis of RLP-based hydrogels, illustrated that these materials do not elicit a significant inflammatory response, suggesting their potential as materials for tissue engineering applications with targets of mechanically demanding tissues such as vocal fold and cardiovascular tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4754112 | PMC |
http://dx.doi.org/10.1002/adhm.201500411 | DOI Listing |
Biomacromolecules
August 2023
Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States.
Microstructured hydrogels are promising platforms to mimic structural and compositional heterogeneities of the native extracellular matrix (ECM). The current state-of-the-art soft matter patterning techniques for generating ECM mimics can be limited owing to their reliance on specialized equipment and multiple time- and energy-intensive steps. Here, a photocross-linking methodology that traps various morphologies of phase-separated multicomponent formulations of compositionally distinct resilin-like polypeptides (RLPs) is reported.
View Article and Find Full Text PDFBiotechnol Bioeng
January 2023
Division of Chemical Engineering and Biotechnology, National Institute of Technology, Ichinoseki College, Ichinoseki Iwate, Japan.
Resilin, an insect structural protein, has excellent flexibility, photocrosslinking properties, and temperature responsiveness. Recombinant resilin-like proteins (RLPs) can be fabricated into three-dimensional (3D) structures for use as cell culture substrates and highly elastic materials. A simplified, high-yielding production process for RLPs is required for their widespread application.
View Article and Find Full Text PDFACS Biomater Sci Eng
September 2021
Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States.
Heterogeneities in hydrogel scaffolds are known to impact the performance of cells in cell-laden materials constructs, and we have employed the phase separation of resilin-like polypeptides (RLPs) as a means to generate such materials. Here, we study the compositional features of resilin-like polypeptides (RLPs) that further enable our control of their liquid-liquid phase separation (LLPS) and how such control impacts the formation of microstructured hydrogels. The evaluation of the phase separation of RLPs in solutions of ammonium sulfate offers insights into the sequence-dependent LLPS of the RLP solutions, and atomistic simulations, along with 2D-nuclear Overhauser effect spectroscopy (NOESY) and correlated spectroscopy (COSY) H NMR, suggest specific amino acid interactions that may mediate this phase behavior.
View Article and Find Full Text PDFACS Appl Bio Mater
December 2020
School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
Resilin-like polypeptides (RLPs) are an important class of intrinsically disordered multistimuli-responsive bioelastomers. The nanostructure of RLPs in solution has been extensively studied in the past few years, from dilute to molecular crowding conditions, and with the addition of rigid biopolymers. Modification of the hierarchical network structure of RLP hydrogels using graphene oxide (GO) as an additive is a burgeoning prospect for their application in the bioelectronic and biomedical fields.
View Article and Find Full Text PDFMacromol Biosci
May 2020
Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA, 01003, USA.
Local, micromechanical environment is known to influence cellular function in heterogeneous hydrogels, and knowledge gained in micromechanics will facilitate the improved design of biomaterials for tissue regeneration. In this study, a system comprising microstructured resilin-like polypeptide (RLP)-poly(ethylene glycol) (PEG) hydrogels is utilized. The micromechanical properties of RLP-PEG hydrogels are evaluated with oscillatory shear rheometry, compression dynamic mechanic analysis, small-strain microindentation, and large-strain indentation and puncture over a range of different deformation length scales.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!