A novel triethylenetetramine-functionalized magnetic graphene oxide composite was prepared and used as a magnetic solid-phase extraction adsorbent for the fast detection of ten trace-level phenolic environmental estrogens in environmental water. The synthesized material was carefully characterized by scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, and X-ray photoelectron spectroscopy to confirm the structure and components. The adsorption and desorption conditions of the adsorbent toward phenolic environmental estrogens were optimized in detailed to obtain the best extraction recovery and elution efficiency. Under the optimum conditions, the limits of detection of the method for ten phenolic environmental estrogens were in range of 0.15-1.5 ng/L, which was lower than the reported methods for phenolic environmental estrogens detection in literatures. This could be contributed to the unique structure and property of the as-prepared material. The developed method was successfully applied for the determination of environmental water samples with recoveries ranging from 88.5 to 105.6%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jssc.201501069 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!