Coupled resonator optical waveguides (CROWs) have the potential to revolutionise integrated optics, to slow-light and enhance linear and non-linear optical phenomena. Here we exploit the broad resonances and subwavelength nature of localized surface plasmons in a compact CROW design where plasmonic nanoparticles are side coupled to a dielectric waveguide. The plasmonic CROW features a low loss central mode with a highly tunable dispersion, that avoids coupling to the plasmonic nanoparticles close to the band-edge. We show that this low loss character is preserved in finite plasmonic CROWs giving rise to Fabry-Perot type resonances that have high quality factors of many thousands, limited only by the CROW length. Furthermore we demonstrate that the proposed CROW design is surprisingly robust to disorder. By varying the geometric parameters one can not only reduce the losses into dissipative or radiative channels but also control the outcoupling of energy to the waveguide. The ability to minimise loss in plasmonic CROWs while maintaining dispersion provides an effective cavity design for chip-integrated laser devices and applications in linear and non-linear nano-photonics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668557 | PMC |
http://dx.doi.org/10.1038/srep17724 | DOI Listing |
Sci Rep
December 2015
The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ.
Coupled resonator optical waveguides (CROWs) have the potential to revolutionise integrated optics, to slow-light and enhance linear and non-linear optical phenomena. Here we exploit the broad resonances and subwavelength nature of localized surface plasmons in a compact CROW design where plasmonic nanoparticles are side coupled to a dielectric waveguide. The plasmonic CROW features a low loss central mode with a highly tunable dispersion, that avoids coupling to the plasmonic nanoparticles close to the band-edge.
View Article and Find Full Text PDFWe present a full-wave finite difference time domain (FDTD) study of a coupled resonator optical waveguide (CROW) rotation sensor consisting of 8 doubly degenerate ring resonators. First we demonstrate the formation of rotation-induced gap in the spectral pass-band of the CROW and show the existence of a dead-zone at low rotation rates which is mainly due to its finite size and partly because of the individual cavities losses. In order to overcome this deficiency, we modulate periodically the refractive indices of the resonators to effectively move CROW's operating point away from this dead-zone.
View Article and Find Full Text PDFOpt Express
January 2013
Ming Hsieh Department of Electrical Engineering, University of Southern California, Powell Hall of Engineering, 3737 Watt Way, Los Angeles, California 90089-0271, USA.
The tight binding approximation (TBA) is used to relate the intrinsic, radiation loss of a coupled resonator optical waveguide (CROW) to that of a single constituent resonator within a light cone picture. We verify the validity of the TBA via direct, full-field simulation of CROWs based on the L2 photonic crystal cavity. The TBA predicts that the quality factor of the CROW increases with that of the isolated cavity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!