The present study aims to provide a comprehensive mathematical model for drug release from microparticles to the adjacent tissues. In the elucidation of drug release mechanisms, the role of mathematical modelling has been depicted thereby facilitating the development of new therapeutic drug by a systematic approach, rather than expensive experimental trial-and-error methods. In order to study the whole process, a two-phase mathematical model describing the dynamics of drug transport in two coupled media is presented. Drug release is described taking into consideration both solubilisation dynamics of drug crystallites and diffusion of the solubilised drug through the microparticle. In the coupled media, reversible dissociation/recystallisation processes are taking place. The model has led to a system of partial differential equations that are solved analytically. The model points out the important roles played by the diffusion, mass-transfer and reaction parameters, which are the main architects behind drug kinetics across two layers. The dependence of drug masses on the main parameters is also analysed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mbs.2015.11.006 | DOI Listing |
Addict Sci Clin Pract
January 2025
Department of Medicine, Division of General Internal Medicine, University of Washington/Harborview Medical Center, 325 9Th Avenue, Box 359780, Seattle, WA, 98104, USA.
Background: Initiation of buprenorphine for treatment of opioid use disorder (OUD) in acute care settings improves access and outcomes, however patients who use methamphetamine are less likely to link to ongoing treatment. We describe the intervention and design from a pilot randomized controlled trial of an intervention to increase linkage to and retention in outpatient buprenorphine services for patients with OUD and methamphetamine use who initiate buprenorphine in the hospital.
Methods: The study is a two-arm pilot randomized controlled trial (N = 40) comparing the mHealth Incentivized Adherence Plus Patient Navigation (MIAPP) intervention to treatment as usual.
J Nanobiotechnology
January 2025
Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
Excessive vascularization during tracheal in-stent restenosis (TISR) is a significant but frequently overlooked issue. We developed an anti-inflammatory coupled anti-angiogenic airway stent (PAGL) incorporating anlotinib hydrochloride and silver nanoparticles using advanced electrospinning technology. PAGL exhibited hydrophobic surface properties, exceptional mechanical strength, and appropriate drug-release kinetics.
View Article and Find Full Text PDFMol Med
January 2025
Department of Urology, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, 510920, Guangdong, People's Republic of China.
Prostate cancer (PCa) is a highly common type of malignancy and affects millions of men in the world since it is easy to recur or emerge therapy resistance. Therefore, it is urgent to find novel treatments for PCa patients. In the current study, we found that tegaserod maleate (TM), an FDA-approved agent, inhibited proliferation, colony formation, migration as well as invasion, caused the arrest of the cell cycle, and promoted apoptosis of PCa cells in vitro.
View Article and Find Full Text PDFClin Drug Investig
January 2025
Cali Biosciences, US, LLC, San Diego, CA, USA.
Background And Objective: There is a significant medical need for improved long-acting local anesthetics to decrease postsurgical pain and reduce postoperative opioid use. While ropivacaine is considered a safer local anesthetic than bupivacaine, no long-acting ropivacaine formulation is currently marketed. Available formulations of bupivacaine show inconsistent pharmacokinetics (PK) among different surgical models, and inconsistency in PK may lead to a reluctance to use the medication owing to fear of local anesthetic systemic toxicity (LAST) or unreliable efficacy.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
Atherosclerosis (AS) is a chronic inflammatory disease characterized by vascular endothelial dysfunction. In the early stage of the disease, endothelial cell injury induces the infiltration of inflammatory macrophages, which secrete large amounts of inflammatory factors, further aggravating endothelial cell dysfunction and exacerbating the disease. Therefore, it is promising for co-targeting endothelial cells and macrophages further regulating the inflammatory microenvironment and endothelial cell function for effective treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!