The structural changes that facilitate signal transduction in blue light sensors using FAD (BLUF) photoreceptors and confer the stability of the rearranged hydrogen bond network between flavin and protein in the signaling state are still poorly understood. Here, we investigate a semiconserved Trp residue in SyPixD (Slr1694) by isotope-edited vibrational spectroscopy and site-directed mutagenesis. In the signaling state, a β-sheet structure involving the backbone of W91 is formed without apparent change of environment of the W91 indole side chain. Mutation of W91, however, significantly influences the stability of the light-adapted state, suggesting that backbone rigidity rather than discrete side-chain conformations govern the stability of the light-adapted state. On the basis of computational and crystallographic models, we interpret these changes as a +1 register shift of the β2/β5 interaction with an unaffected indole side-chain conformation, rather than a +2 register shift accompanied by an indole side-chain flip that was previously proposed on the basis of X-ray structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.5b02245 | DOI Listing |
Phys Chem Chem Phys
September 2016
Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
SyPixD (Slr1694) is a blue-light receptor that contains a BLUF (blue-light sensor using a flavin chromophore) domain for the function of phototaxis. The key reaction of this protein is a light-induced conformational change and subsequent dissociation reaction from the decamer to the dimer. In this study, anomalous effects of pressure on this reaction were discovered, and changes in the compressibility of its short-lived intermediates were investigated.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2015
Department of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany.
The structural changes that facilitate signal transduction in blue light sensors using FAD (BLUF) photoreceptors and confer the stability of the rearranged hydrogen bond network between flavin and protein in the signaling state are still poorly understood. Here, we investigate a semiconserved Trp residue in SyPixD (Slr1694) by isotope-edited vibrational spectroscopy and site-directed mutagenesis. In the signaling state, a β-sheet structure involving the backbone of W91 is formed without apparent change of environment of the W91 indole side chain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!