Two "end-off" compartmental ligands, 2-formyl-4-chloro-6-N-ethylmorpholine-iminomethyl-phenol (HL1) and 2-formyl-4-methyl-6-N-ethylpyrrolidine-iminomethyl-phenol (HL2) have been designed and three complexes of Mn(ii), one mono-, one di- and a polynuclear, namely Mn(L1)(SCN)2(H2O)] (), [Mn2(L1)(OAc)2](BPh4)] (), and [Mn2(L2)(OAc)2(dca)]n () have been synthesized and structurally characterized. Variable temperature magnetic studies of and have been performed and data analyses reveal that Mn centers are antiferromagnetic coupled with J = -9.15 cm(-1) and J = -46.89, respectively. Catecholase activity of all the complexes has been investigated using 3,5-di-tert-butyl catechol (3,5-DTBC). All are highly active and the activity order on the basis of the kcat value is > > . In order to unveil whether the metal centered redox participation or the radical pathway is responsible for the catecholase-like activity of the complexes, detailed EPR and cyclic voltammetric (CV) studies have been performed. In addition to the six-line EPR spectrum characteristic to Mn(ii), an additional peak at g ∼ 2 is observed when the EPR study is done with the mixture of 3,5-DTBC and the catalyst, suggesting the formation of an organic radical, most likely ligand centered. The CV experiment with the mixture of 3,5-DTBC and the catalyst reveals ligand centered reduction rather than reduction of Mn(ii) to Mn(i). It is thus inferred that complexes show catecholase-like activity due to radical generation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5dt03659c | DOI Listing |
Biophys Chem
February 2025
Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh 202002, India. Electronic address:
This paper presents the synthesis process of a ligand known as 2-(naphthalene-1-yl)-1H-phenanthro[9,10-d]imidazole (NIP) and its metal complex with zinc (II), denoted as FA-128. The structural validation of FA-128 is accomplished through single-crystal X-ray diffraction (XRD). To explore the biological implications, FA-128's interaction with BSA is investigated.
View Article and Find Full Text PDFChem Sci
November 2024
School of Material Science and Engineering, University of Jinan Jinan 250024 China
Modulation of coordination configuration is crucial for boosting the biomimetic catalytic activity of nanozymes, but remains challenging. Here, we found that the non-first-shell amino group in the ligand was capable of steering the N/S coordination number through remote induction to enable the formation of a low-coordinated CuNS configuration. This endowed the resulting nanozyme (ATT-Cu) with an upshifted d-band center compared with a control nanozyme (TT-Cu) with CuNS configuration, enhancing the adsorption capabilities of ATT-Cu for O and HO intermediates as well as its affinity for catechol.
View Article and Find Full Text PDFAnal Methods
December 2024
Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan.
Tea contains various antioxidant compounds, including polyphenols, catechins, theaflavins, theasinensins, and flavonoids. Among these, epigallocatechin gallate (EGCG) is a crucial antioxidant recognized for its potent bioactivity. This study presents the synthesis of a highly selective Cu-PyC NH-based metal-organic framework (MOF) nanozyme that exhibits catecholase-like activity to assess the antioxidant capabilities of EGCG.
View Article and Find Full Text PDFDalton Trans
August 2024
Department of Chemistry, Jadavpur University, Kolkata-700032, India.
A new Mannich base (2-(4-(2-hydroxy-3-methoxy-5-methylbenzyl)-piperazin-1-yl)methyl)-6-methoxy-4-ethylphenol (H2L) and its tetranuclear Ni complex [NiL(μ-Cl)(HO)]Cl (compound 1) are characterised using single-crystal X-ray diffraction measurements. Compound 1 contains four different Ni centres in a rhombus-like structure. Two Ni atoms (Ni1 and Ni2) have a NiNO coordination sphere, while the other two (Ni3 and Ni4) have a NiOCl coordination environment and Ni-Cl-Ni bridges connect them.
View Article and Find Full Text PDFSmall
November 2024
School of Material Science and Engineering, University of Jinan, Jinan, 250024, China.
Boosting the biomimetic catalytic activity of nanozyme is important for its potential application. One common strategy to achieve this goal mainly focused on manipulating the electronic state of metal site through the first coordination shell to modulate the adsorption/desorption strength of related reactant, intermediate and/or product, but remained challenging. Taking Cu-based catecholase-mimicking nanozyme for example, this work herein reports a different strategy involving amino-induced modulation of electronic state through the second shell to raise the electron density of Cu site, which further triggers the repulsion effect between neighboring geminal Cu centers to increase the Cu─Cu distance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!