Ultrafast growth of carbon nanotubes on graphene for capacitive energy storage.

Nanotechnology

School of Physics & Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, People's Republic of China.

Published: January 2016

We have demonstrated a novel three-dimensional (3D) architecture of a graphene/carbon nanotube (G-CNT) hybrid synthesized at large scale within just 5 s via a simple microwave-heating method without the usage of any other conducting or expanding agent for the first time. The carbon composites obtained consist of evenly grown CNTs with an average diameter of about 15 nm on the surface of graphene nanosheets. The G-CNT hybrid exhibits enhanced electrochemical performance for both aqueous and organic supercapacitor devices. Particularly, the G-CNT electrodes demonstrate an enhanced specific capacitance of 361 F g(-1) at a current density of 1.1 A g(-1) in an aqueous electrolyte and a volumetric capacitance of 254 F cm(-3) in an organic electrolyte. They also display excellent cycle stability with nearly 91.2% of the initial capacitance retained after 10 000 charging-discharging cycles at a current density of 15 A g(-1). This demonstrates that the developed composites have potential applications in supercapacitors and other energy storage devices.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/27/2/025401DOI Listing

Publication Analysis

Top Keywords

energy storage
8
g-cnt hybrid
8
current density
8
density g-1
8
ultrafast growth
4
growth carbon
4
carbon nanotubes
4
nanotubes graphene
4
graphene capacitive
4
capacitive energy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!