Objective: Recent studies have demonstrated that Ang1-7 has anti-inflammatory effects. Since the formation of Ang1-7 is significantly altered in the setting of diabetes, here we aimed to evaluate whether Ang1-7 infusion could ameliorate diabetes-induced leukocyte recruitment.
Methods: Wild-type male Wistar rats were randomly allocated to the following groups: control + saline, control + Ang1-7, diabetes + saline, diabetes + Ang1-7. Diabetes was induced by streptozotocin. Saline and Ang1-7 (576 μg/kg/day) were injected intraperitoneally daily. After 4 weeks leukocyte trafficking was studied in vivo by intravital microscopy in the mesenteric bed, where the expression of pro-oxidative, proinflammatory, and profibrotic molecules was also assessed. In parallel in vitro studies, HUVEC were grown in 5 mM, 22 mM, 30 mM, 40 mM, 50 mM, and 75 mM glucose media for 48 h, 72 h and 6 days and were treated either with placebo, or with Ang1-7, or with Ang1-7 and its inhibitor A779 in order to evaluate the expression of ICAM-1 and VCAM-1. We further studied leukocytes recruitment in vitro by evaluating PMN-HUVEC adhesion.
Results: Ang1-7 prevented in vivo diabetes-induced leukocyte adhesion and extravasation, and it significantly reduced vascular hypertrophy and the other molecular changes due to diabetes. Ang 1-7 prevented also in vitro the hyperglycemia-induced increase of ICAM-1 and VCAM-1 as well as the hyperglycemia-induced PMN adhesion. A779 inhibited Ang 1-7 effects.
Conclusions: Ang1-7 significantly reduced diabetes-induced leukocyte recruitment both in vivo and in vitro. These findings emphasize the potential utility of ACE2/Ang1-7/Mas repletion as a strategy to reduce diabetes-induced atherosclerosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.atherosclerosis.2015.11.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!