A Systems Oncology Approach Identifies NT5E as a Key Metabolic Regulator in Tumor Cells and Modulator of Platinum Sensitivity.

J Proteome Res

Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom.

Published: January 2016

Altered metabolism in tumor cells is required for rapid proliferation but also can influence other phenotypes that affect clinical outcomes such as metastasis and sensitivity to chemotherapy. Here, a genome-wide association study (GWAS)-guided integration of NCI-60 transcriptome and metabolome data identified ecto-5'-nucleotidase (NT5E or CD73) as a major determinant of metabolic phenotypes in cancer cells. NT5E expression and associated metabolome variations were also correlated with sensitivity to several chemotherapeutics including platinum-based treatment. NT5E mRNA levels were observed to be elevated in cells upon in vitro and in vivo acquisition of platinum resistance in ovarian cancer cells, and specific targeting of NT5E increased tumor cell sensitivity to platinum. We observed that tumor NT5E levels were prognostic for outcomes in ovarian cancer and were elevated after treatment with platinum, supporting the translational relevance of our findings. In this work, we integrated and analyzed a plethora of public data, demonstating the merit of such a systems oncology approach for the discovery of novel players in cancer biology and therapy. We experimentally validated the main findings of the NT5E gene being involved in both intrinsic and acquired resistance to platinum-based drugs. We propose that the efficacy of conventional chemotherapy could be improved by NT5E inhibition and that NT5E expression may be a useful prognostic and predictive clinical biomarker.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jproteome.5b00793DOI Listing

Publication Analysis

Top Keywords

nt5e
9
systems oncology
8
oncology approach
8
tumor cells
8
cancer cells
8
nt5e expression
8
ovarian cancer
8
cells
5
approach identifies
4
identifies nt5e
4

Similar Publications

Attempts to activate an anti-tumor immune response in glioblastoma (GBM) have been met with many challenges due to its inherently immunosuppressive tumor microenvironment. The degree and mechanisms by which molecularly and phenotypically diverse tumor-propagating glioma stem cells (GSCs) contribute to this state are poorly defined. In this study, our multifaceted approach combining bioinformatics analyses of clinical and experimental datasets, single-cell sequencing, and molecular and pharmacologic manipulation of patient-derived cells identified GSCs expressing immunosuppressive effectors mimicking regulatory T cells (Tregs).

View Article and Find Full Text PDF

Alternative splicing is a post-transcriptional process resulting in multiple protein isoforms from a single gene. Abnormal splicing may lead to metabolic diseases, including type 2 diabetes mellitus (T2DM). To identify the splicing factor expression that predicts T2DM remission in coronary heart disease (CHD) patients, we identified newly diagnosed T2DM at baseline ( = 190) from the CORDIOPREV study.

View Article and Find Full Text PDF

Despite the emergence of the first human papillomavirus vaccine, the incidence of cervical cancer is still responsible for more than 350,000 deaths yearly. Over the past decade, ecto-5'-nucleotidase (CD73/5'-NT) and extracellular adenosine (ADO) signalling has been the subject of many investigations to target cancer progression. In general, the adenosinergic axis has been linked to tumourigenic effects.

View Article and Find Full Text PDF

As one of the most destructive and invasive cancers, pancreatic cancer exhibits complex tumor heterogeneity, which has been a major challenge for clinicians in terms of patient treatment and prognosis. The toll-like receptor (TLR) pathway is closely related to the immune microenvironment within various cancer tissues. To explore the development pattern of pancreatic cancer and find an ideal biomarker, our research has explored the mechanism of the TLR pathway in pancreatic cancer.

View Article and Find Full Text PDF

CD73, an ectoenzyme responsible for adenosine production, is often elevated in immuno-suppressive tumor environments. Inhibition of CD73 activity holds great promise as a therapeutic strategy for CD73-expressing cancers. In this study, we have developed a therapeutic anti-human CD73 antibody cocktail, HB0045.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!