Multi-modal neurophysiologic monitoring consisting of triggered and spontaneous electromyography and transcranial motor-evoked potentials may detect and prevent both acute and slow developing mechanical and vascular nerve injuries in lateral lumbar interbody fusion (LLIF) surgery. In case report 1, a marked reduction in the transcranial motor-evoked potentials on the operative side alerted to a 28% decrease in mean arterial blood pressure in a 54-year-old woman during an L3-4, L4-5 LLIF. After hemodynamic stability was regained, transcranial motor-evoked potentials returned to baseline and the patient suffered no postoperative complications. In case report 2, a peroneal nerve train-of-four stimulation threshold of 95 mA portended the potential for a triggered electromyography false negative in a 70-year-old woman with type 2 diabetes, peripheral neuropathy, and body mass index of 30.7 kg/m undergoing an L3-4, L4-5 LLIF. Higher triggered electromyography threshold values were applied to this patient's relatively quiescent triggered electromyography and the patient suffered no postoperative complications. In case report 3, the loss of right quadriceps motor-evoked potentials detected a retractor related nerve injury in a 59-year-old man undergoing an L4-5 LLIF. The surgery was aborted, but the patient suffered persistent postoperative right leg paresthesia and weakness. These reports highlight the sensitivity of peripheral nerve elements to ischemia (particularly in the presence of vascular risk factors) during the LLIF procedure and the need for dynamic multi-modal intraoperative monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/WNP.0000000000000136 | DOI Listing |
Cureus
November 2024
Physiology, All India Institute of Medical Sciences, New Delhi, New Delhi, IND.
Background Human growth and development involve significant changes in bodily dimensions, yet motor learning appears to remain stable throughout life. This study investigates whether adjustments in motor velocity take place as individuals age by examining the latency of transcranial motor-evoked potentials (TcMEPs) across different age groups. Methods Data were collected from 100 patients who underwent surgery with intraoperative neuromonitoring at the All India Institute of Medical Sciences, New Delhi, between January 1, 2019, and January 1, 2020.
View Article and Find Full Text PDFLin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi
January 2025
This study aimed to compare the effects of cochlear implantation(CI) on vestibular function in patients with large vestibular aqueduct syndrome(LVAS) and in patients with extremely severe deafness with normal inner ear structure. A total of 28 LVAS patients and 28 patients with normal inner ear structure who suffered from extremely severe deafness were selected. The parameters of caloric tests, bone conduction evoked cervical vestibular-evoked myogenic potentials(cVEMP), bone conduction evoked ocular vestibular-evoked myogenic potentials(oVEMP) and video head impulse tests(v-HIT) were compared between the two groups before and after CI.
View Article and Find Full Text PDFLin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi
January 2025
To retrospectively analyze the results of auditory examination,vestibular function examination and laboratory examination of 63 patients diagnosed as vestibular neuritis.Methods:A total of 63 patients diagnosed with vestibular neuritis hospitalized in the Department of Otolaryngology, Head and Neck Surgery of the Third Affiliated Hospital of Sun Yat-sen University, from October 2012 to December 2022 were recruited. All patients met the diagnostic criteria for the 2022 Bárány association vestibular neuritis.
View Article and Find Full Text PDFNeurobiol Aging
December 2024
Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Shirley Ryan AbilityLab, Chicago, IL, USA.
A decline in upper limb strength is common with normal aging. However, whether age-related strength decline is paralleled by reduced excitability of descending motor pathways is unclear. The reticulospinal tract is a key subcortical pathway involved in gross motor output and exhibits increased excitability following resistance training.
View Article and Find Full Text PDFSci Rep
December 2024
BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland.
A novel variant of paired-associative stimulation (PAS) consisting of high-frequency peripheral nerve stimulation (PNS) and high-intensity transcranial magnetic stimulation (TMS) above the motor cortex, called high-PAS, can lead to improved motor function in patients with incomplete spinal cord injury. In PAS, the interstimulus interval (ISI) between the PNS and TMS pulses plays a significant role in the location of the intended effect of the induced plastic changes. While conventional PAS protocols (single TMS pulse often applied with intensity close to resting motor threshold, and single PNS pulse) usually require precisely defined ISIs, high-PAS can induce plasticity at a wide range of ISIs and also in spite of small ISI errors, which is helpful in clinical settings where precise ISI determination can be challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!