Objective: Macrophages are important producers of obesity-induced MCP-1; however, initial obesity-induced increases in MCP-1 production precede M1 macrophage accumulation in visceral adipose tissue (VAT). The initial cellular source of obesity-induced MCP-1 in vivo is currently unknown. Preliminary reports based on in vitro studies of preadipocyte cell lines and adherent stroma-vascular fraction cells suggest that resident stromal cells express MCP-1. In the past several years, elegant methods of identifying adipocyte progenitor cells (AdPCs) have become available, making it possible to study these cells in vivo. We have previously published that global deletion of transcription factor Inhibitor of Differentiation 3 (Id3) attenuates high fat diet-induced obesity, but it is unclear if Id3 plays a role in diet-induced MCP-1 production. We sought to determine the initial cellular source of MCP-1 and identify molecular regulators mediating MCP-1 production.
Methods: Id3 (+/+) and Id3 (-/-) mice were fed either a standard chow or HFD for varying lengths of time. Flow cytometry, semi-quantitative real-time PCR, ELISAs and adoptive transfers were used to assess the importance of AdPCs during diet-induced obesity. Flow cytometry was also performed on a cohort of 14 patients undergoing bariatric surgery.
Results: Flow cytometry identified committed CD45(-)CD31 (-) Ter119(-)CD29(+)CD34(+)Sca-1(+)CD24(-) adipocyte progenitor cells as producers of high levels of MCP-1 in VAT. High-fat diet increased AdPC numbers, an effect dependent on Id3. Loss of Id3 increased p21(Cip1) levels and attenuated AdPC proliferation, resulting in reduced MCP-1 and M1 macrophage accumulation in VAT, compared to Id3 (+/+) littermate controls. AdPC rescue by adoptive transfer of 50,000 Id3 (+/+) AdPCs into Id3 (-/-) recipient mice increased MCP-1 levels and M1 macrophage number in VAT. Additionally, flow cytometry identified MCP-1-producing CD45(-)CD31(-)CD34(+)CD44(+)CD90(+) AdPCs in human omental and subcutaneous adipose tissue, with a higher percentage in omental adipose. Furthermore, high surface expression of CD44 marked abundant MCP-1 producers, only in visceral adipose tissue.
Conclusions: This study provides the first in vivo evidence, to our knowledge, that committed AdPCs in VAT are the initial source of obesity-induced MCP-1 and identifies the helix-loop-helix transcription factor Id3 as a critical regulator of p21(Cip1) expression, AdPC proliferation, MCP-1 expression and M1 macrophage accumulation in VAT. Inhibition of Id3 and AdPC expansion, as well as CD44 expression in human AdPCs, may serve as unique therapeutic targets for the regulation of adipose tissue inflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4632113 | PMC |
http://dx.doi.org/10.1016/j.molmet.2015.07.010 | DOI Listing |
Phytomedicine
January 2025
The Department of General Surgery, Zhongshan City People's Hospital, Zhongshan, Guangdong Province, 528400, China. Electronic address:
Background: The incidence of papillary thyroid carcinoma (PTC) is on the rise globally. It is frequently associated with early lymphatic metastasis, and the poor prognosis tends to be poor once metastasis or recurrence occurs, even with current treatment modalities. Kushenol O, a novel extract derived from Sophora flavescens, has shown remarkable anticancer properties.
View Article and Find Full Text PDFCardiovasc Toxicol
January 2025
Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Harbin, 150001, Heilongjiang, PR China.
Atherosclerosis risk is elevated in diabetic patients, but the underlying mechanism such as the involvement of macrophages remains unclear. Here, we investigated the underlying mechanism related to the pro-inflammatory activation of macrophages in the development of diabetic atherosclerosis. Bioinformatics tools were used to analyze the macrophage-related transcriptome differences in patients with atherosclerosis and diabetic mice.
View Article and Find Full Text PDFJ Clin Lipidol
December 2024
Internal Medicine Department, Coimbra's Healthcare Integrated Delivery System, Praceta Professor Mota Pinto, 3004-561, Coimbra, Portugal.
Tangier disease is an extremely rare autosomal recessive monogenic disorder caused by mutations in the ATP binding cassette transporter A1 gene (ABCA1). It is characterized by severe deficiency or absence of high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-1 (ApoA1), with highly variable clinical presentations depending on cholesterol accumulation in macrophages across different tissues. We report a case of a 47-year-old man with very low HDL-C and very high triglyceride levels, initially attributed to the patient's metabolic syndrome, alcohol abuse, and splenomegaly.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071 China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 China.
Macrophages have emerged as promising cellular vehicles for the delivery of therapeutic agents to tumor sites. However, the cytotoxicity of therapeutic agents toward the cellular carriers and the effective release of therapeutic agents at the tumor site remain the main challenges faced by macrophage-mediated drug delivery systems. Herein, a near-infrared (NIR)-triggered release of self-accelerating cascade nanoreactor (HCFG) delivered by macrophages (HCFG@R) was developed for synergistic tumor photothermal therapy (PTT)/starvation therapy (ST)/chemodynamic therapy (CDT).
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Infectious Diseases Laboratory, Campus Ministro Reis Velloso, Federal University of Parnaíba Delta, 64202-020 Parnaíba, PI, Brazil. Electronic address:
Visceral leishmaniasis is a systemic disease that affects various internal organs and represents the most severe and fatal form of leishmaniasis. Conventional treatment presents significant challenges, such as prolonged management in hospital settings, high toxicity, and an increasing growing number of cases of resistance. In previous studies, our research group demonstrated the effective and selective activity of the 2-amino-thiophene derivative SB-83 in preclinical models of cutaneous leishmaniasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!