A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Disruption of NAD(+) binding site in glyceraldehyde 3-phosphate dehydrogenase affects its intranuclear interactions. | LitMetric

Disruption of NAD(+) binding site in glyceraldehyde 3-phosphate dehydrogenase affects its intranuclear interactions.

World J Biol Chem

Manali Phadke, Natalia Krynetskaia, Carlos Barrero, Salim Merali, Scott A Gothe, Evgeny Krynetskiy, Temple University School of Pharmacy, Philadelphia, PA 19140, United States.

Published: November 2015

Aim: To characterize phosphorylation of human glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and mobility of GAPDH in cancer cells treated with chemotherapeutic agents.

Methods: We used proteomics analysis to detect and characterize phosphorylation sites within human GAPDH. Site-specific mutagenesis and alanine scanning was then performed to evaluate functional significance of phosphorylation sites in the GAPDH polypeptide chain. Enzymatic properties of mutated GAPDH variants were assessed using kinetic studies. Intranuclear dynamics parameters (diffusion coefficient and the immobile fraction) were estimated using fluorescence recovery after photobleaching (FRAP) experiments and confocal microscopy. Molecular modeling experiments were performed to estimate the effects of mutations on NAD(+) cofactor binding.

Results: Using MALDI-TOF analysis, we identified novel phosphorylation sites within the NAD(+) binding center of GAPDH at Y94, S98, and T99. Using polyclonal antibody specific to phospho-T99-containing peptide within GAPDH, we demonstrated accumulation of phospho-T99-GAPDH in the nuclear fractions of A549, HCT116, and SW48 cancer cells after cytotoxic stress. We performed site-mutagenesis, and estimated enzymatic properties, intranuclear distribution, and intranuclear mobility of GAPDH mutated variants. Site-mutagenesis at positions S98 and T99 in the NAD(+) binding center reduced enzymatic activity of GAPDH due to decreased affinity to NAD(+) (Km = 741 ± 257 μmol/L in T99I vs 57 ± 11.1 µmol/L in wild type GAPDH. Molecular modeling experiments revealed the effect of mutations on NAD(+) binding with GAPDH. FRAP (fluorescence recovery after photo bleaching) analysis showed that mutations in NAD(+) binding center of GAPDH abrogated its intranuclear interactions.

Conclusion: Our results suggest an important functional role of phosphorylated amino acids in the NAD(+) binding center in GAPDH interactions with its intranuclear partners.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4657119PMC
http://dx.doi.org/10.4331/wjbc.v6.i4.366DOI Listing

Publication Analysis

Top Keywords

nad+ binding
24
binding center
16
gapdh
13
phosphorylation sites
12
mutations nad+
12
center gapdh
12
glyceraldehyde 3-phosphate
8
3-phosphate dehydrogenase
8
characterize phosphorylation
8
mobility gapdh
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!