Competing interaction of two novel N-acyl derivatives of ampicillin i.e. N'-benzylchlorbenzimidazole (No. 48) and N-pyrazolytiazole (No. 72) derivatives and 14C-benzylpenicillin with penicillin-binding proteins (PBP) of E. coli was studied. It was shown that ampicillin and its derivative No. 48 markedly differed in their affinity to various PBPs. Derivative No. 72 did not prevent binding of the labeled benzylpenicillin to any PBP which corresponded to its low antimicrobial activity. Analogous experiments with new cephalosporin structures i.e. active and inactive N-acyl derivatives of cephalosporin showed that the active derivative No. 94 i.e. N-methyltiobenzimidazole derivative had the highest affinity to PBP-2 and PBP-5. The inactive derivative No. 68 i.e. N-chlorbenzimidazole derivative also had high affinity to PBP-1b, PBP-2 and PBP-3 essential for the cell. No activity of the latter compound against intact cells of E. coli was probably due to its low penetration through the outer membrane of the bacterial cell. Estimation of affinity of the beta-lactam structures to various PBPs not only provided data on the mechanism of their action but also made it possible to explain in some cases the peculiarities of their antimicrobial spectrum.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!