Objective: The correlation between GATA4 gene polymorphism and congenital heart disease (CHD) was analyzed.

Method: Clinical data and blood samples were collected from 350 CHD patients who were treated at the Department of Cardiology in Beijing Anzhen Hospital. The control group consisted of 350 healthy subjects receiving physical examination at our hospital during the same period. Polymorphism was detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis for locus rs11392441 of GATA4 gene.

Results: Polymorphism of locus rs1139244 of GATA4 gene was detected in CHD patients. The distribution frequencies of GG genotype and G allele were significantly higher than those of the control group.

Conclusion: Polymorphism of locus rs1139244 of GATA4 gene was correlated with CHD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4659101PMC

Publication Analysis

Top Keywords

gata4 gene
16
correlation gata4
8
gene polymorphism
8
polymorphism congenital
8
congenital heart
8
heart disease
8
chd patients
8
polymorphism locus
8
locus rs1139244
8
rs1139244 gata4
8

Similar Publications

Abnormal development of the second heart field significantly contributes to congenital heart defects, often caused by disruptions in tightly regulated molecular pathways. , a gene encoding a protein with SET and MYND domains, is essential for heart and skeletal muscle development. Mutations in SMYD1 result in severe cardiac malformations and misregulation of expression in mammals.

View Article and Find Full Text PDF

Uncovering Molecular Mechanisms of Feed Efficiency in Pigs Through Multi-Omics Analysis of the Jejunum.

Animals (Basel)

January 2025

Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.

Feed efficiency (FE) is a crucial trait in pig production that influences both economic viability and environmental sustainability. The jejunum, an essential organ for nutrient absorption, plays a significant role in determining FE by affecting how pigs process and utilize feed. To explore the genetic and regulatory mechanisms behind FE, we conducted an integrative multi-omics study using RNA sequencing (RNA-seq) and ATAC sequencing (ATAC-seq) on pigs with high and low FE.

View Article and Find Full Text PDF

In mammals, SOX9/Sox9 expression in embryonic gonads is essential for male gonadal sex determination. Multiple enhancers of Sox9 have been identified, of which the mXYSRa/Enh13 enhancer plays a crucial role in mice. SOX9 and SRY binding sites within the enhancer have been identified as functional.

View Article and Find Full Text PDF

The role of GATA4 in mesenchymal stem cell senescence: A new frontier in regenerative medicine.

Regen Ther

March 2025

Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia.

The Mesenchymal Stem Cell (MSC) is a multipotent progenitor cell with known differentiation potential towards various cell lineage, making it an appealing candidate for regenerative medicine. One major contributing factor to age-related MSC dysfunction is cellular senescence, which is the hallmark of relatively irreversible growth arrest and changes in functional properties. GATA4, a zinc-finger transcription factor, emerges as a critical regulator in MSC biology.

View Article and Find Full Text PDF

An autocrine synergistic desmin-SPARC network promotes cardiomyogenesis in cardiac stem cells.

Cells Dev

December 2024

Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria. Electronic address:

The mammalian heart contains cardiac stem cells throughout life, but it has not been possible to harness or stimulate these cells to repair damaged myocardium in vivo. Assuming physiological relevance of these cells, which have evolved and have been maintained throughout mammalian evolution, we hypothesize that cardiac stem cells may contribute to cardiomyogenesis in an unorthodox manner. Since the intermediate filament protein desmin and the matricellular Secreted Protein Acidic and Rich in Cysteine (SPARC) promote cardiomyogenic differentiation during embryogenesis in a cell-autonomous and paracrine manner, respectively, we focus on their genes and employ mouse embryonic and cardiac stem cell lines as in vitro models to ask whether desmin and SPARC cooperatively influence cardiomyogenesis in cardiac stem and progenitor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!