AI Article Synopsis

  • Multicomponent nanocrystal superlattices have unique properties stemming from their mesoscale structures, but traditional alkyl-chain ligands can limit their programmability.
  • Polymeric ligands improve programmability by allowing for better control over size and interactions through adjustments in molecular weight and structure.
  • The research demonstrates the creation of binary nanocrystal superlattices with organized structures by tuning nanocrystal size and polymer ligands, enabling new designs for functional materials with controlled properties.

Article Abstract

Multicomponent nanocrystal superlattices represent an interesting class of material that derives emergent properties from mesoscale structure, yet their programmability can be limited by the alkyl-chain-based ligands decorating the surfaces of the constituent nanocrystals. Polymeric ligands offer distinct advantages, as they allow for more precise tuning of the effective size and 'interaction softness' through changes to the polymer's molecular weight, chemical nature, architecture, persistence length and surrounding solvent. Here we show the formation of 10 different binary nanocrystal superlattices (BNSLs) with both two- and three-dimensional order through independent adjustment of the core size of spherical nanocrystals and the molecular weight of densely grafted polystyrene ligands. These polymer-brush-based ligands introduce new energetic contributions to the interparticle potential that stabilizes various BNSL phases across a range of length scales and interparticle spacings. Our study opens the door for nanocrystals to become modular elements in the design of functional particle brush solids with controlled nanoscale interfaces and mesostructures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686769PMC
http://dx.doi.org/10.1038/ncomms10052DOI Listing

Publication Analysis

Top Keywords

nanocrystal superlattices
8
molecular weight
8
structural diversity
4
diversity binary
4
binary superlattices
4
superlattices self-assembled
4
self-assembled polymer-grafted
4
nanocrystals
4
polymer-grafted nanocrystals
4
nanocrystals multicomponent
4

Similar Publications

Collective optical properties can emerge from an ordered ensemble of emitters due to interactions between the individual units. Superlattices of halide perovskite nanocrystals exhibit collective light emission, influenced by dipole-dipole interactions between simultaneously excited nanocrystals. This coupling changes both the emission energy and rate compared to the emission of uncoupled nanocrystals.

View Article and Find Full Text PDF

Interparticle Ligand Exchange Kinetics Revealed by Time-Resolved SANS.

Nano Lett

December 2024

Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.

Interparticle ligand exchange can occur during the formation of nanoparticle superlattices (NPSLs), affecting the symmetry of the NPSLs. Here, we report time-resolved small-angle neutron scattering (TR-SANS) measurements of the interparticle exchange kinetics of thiolate ligands among gold nanoparticles (AuNPs) at different temperatures. To track the ligand exchange among AuNPs, two groups of AuNPs were functionalized with hydrogenated and deuterated dodecanethiol, respectively, and then mixed in a solvent mixture of toluene and deuterated toluene for shell contrast.

View Article and Find Full Text PDF

The First Decade of Colloidal Lead Halide Perovskite Quantum Dots (in our Laboratory).

Chimia (Aarau)

December 2024

Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, CH-8093 Zürich.

Ten years after the discovery of colloidal lead halide perovskite nanocrystals (LHP NCs), the field has witnessed substantial progress in synthetic methods, understanding of their surface chemistry and unique optical properties, precise control over NC size, shape, and composition. Ligand engineering, particularly with cationic and zwitterionic head groups, massively enhanced NC stability, compatibility with organic solvents, and photoluminescence efficiency. These breakthroughs allowed for the self-assembly of monodisperse NCs into complex long-range ordered superlattices and enabled the exploration of collective optical phenomena, such as superfluorescence.

View Article and Find Full Text PDF

Liquid/Liquid Interfacial Assembly of Poly(methyl methacrylate)-Grafted Nanoparticles into Superlattice Monolayers and Their Application as Floating Gates for High Performance Memory.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), State Key Laboratory of Materials Processing and Die & Mold Technology, and Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.

Polymer/gold nanoparticle (AuNP) composites have been utilized as floating gates to enhance the performance of memory devices. However, these devices typically exhibit a low ON/OFF drain current ratio (/) and unstable charge trapping, attributed to the poorly defined arrangement of AuNPs within the composite floating gate. To address these limitations, this study employs poly(methyl methacrylate)-grafted AuNPs (Au@PMMA) as building blocks for the fabrication of monolayered superlattice films with a highly ordered structure via liquid/liquid interfacial assembly.

View Article and Find Full Text PDF

In the last decade, momentous progress in lead halide perovskite (LHP) light-emitting diodes (LEDs) is witnessed as their external quantum efficiency (η) has increased from 0.1 to more than 30%. Indeed, perovskite LEDs (PeLEDs), which can in principle reach 100% internal quantum efficiency as they are not limited by the spin-statistics, are reaching their full potential and approaching the theoretical limit in terms of device efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!