Broadband chirality-coded meta-aperture for photon-spin resolving.

Nat Commun

Nanophotonics Research Centre, Shenzhen University &Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

Published: December 2015

The behaviour of light transmitted through an individual subwavelength aperture becomes counterintuitive in the presence of surrounding 'decoration', a phenomenon known as the extraordinary optical transmission. Despite being polarization-sensitive, such an individual nano-aperture, however, often cannot differentiate between the two distinct spin-states of photons because of the loss of photon information on light-aperture interaction. This creates a 'blind-spot' for the aperture with respect to the helicity of chiral light. Here we report the development of a subwavelength aperture embedded with metasurfaces dubbed a 'meta-aperture', which breaks this spin degeneracy. By exploiting the phase-shaping capabilities of metasurfaces, we are able to create specific meta-apertures in which the pair of circularly polarized light spin-states produces opposite transmission spectra over a broad spectral range. The concept incorporating metasurfaces with nano-apertures provides a venue for exploring new physics on spin-aperture interaction and potentially has a broad range of applications in spin-optoelectronics and chiral sensing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686760PMC
http://dx.doi.org/10.1038/ncomms10051DOI Listing

Publication Analysis

Top Keywords

subwavelength aperture
8
broadband chirality-coded
4
chirality-coded meta-aperture
4
meta-aperture photon-spin
4
photon-spin resolving
4
resolving behaviour
4
behaviour light
4
light transmitted
4
transmitted individual
4
individual subwavelength
4

Similar Publications

Portable astronomical observation system based on large-aperture concentric-ring metalens.

Light Sci Appl

January 2025

Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtzplatz 1, Eggenstein-Leopoldshafen, 76344, Germany.

The core advantage of metalenses over traditional bulky lenses lies in their thin volume and lightweight. Nevertheless, as the application scenarios of metalenses extend to the macro-scale optical imaging field, a contradiction arises between the increasing demand for large-aperture metalenses and the synchronous rise in design and processing costs. In response to the application requirements of metalens with diameter reaching the order of 10λ or even 10λ, this paper proposes a novel design method for fixed-height concentric-ring metalenses, wherein, under the constraints of the processing technology, a subwavelength 2D building unit library is constructed based on different topological structures, and the overall cross-section of the metalens is assembled.

View Article and Find Full Text PDF

Talbot effect based sensor measuring grating period change in subwavelength range.

Sci Rep

December 2024

Physical Research Laboratory, Ahmedabad, Gujarat, 380009, India.

Talbot length, the distance between two consecutive self-image planes along the propagation axis for a periodic diffraction object (grating) illuminated by a plane wave, depends on the period of the object and the wavelength of illumination. This property makes the Talbot effect a straightforward technique for measuring the period of a periodic object (grating) by accurately determining the Talbot length for a given illumination wavelength. However, since the Talbot length scale is proportional to the square of the grating period, traditional Talbot techniques face challenges when dealing with smaller grating periods and minor changes in the grating period.

View Article and Find Full Text PDF

Hybrid nanoplasmonic structures composed of subwavelength apertures in metallic films and nanoparticles have recently been demonstrated as ultrasensitive plasmonic sensors. This work investigates the electrokinetically driven propagation of the assembly mechanism of the metallic nanoparticles through nanoapertures. The Debye-Hückel approximation for a symmetric electrolyte solution with overlapping electrical double layers (EDLs) is used to obtain an analytical solution to the problem.

View Article and Find Full Text PDF

Flat lens-based subwavelength focusing and scanning enabled by Fourier translation.

Nanophotonics

August 2024

College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.

We demonstrate a technique for flexibly controlling subwavelength focusing and scanning, by using the Fourier translation property of a topology-preserved flat lens. The Fourier transform property of the flat lens enables converting an initial phase shift of light into a spatial displacement of its focus. The flat lens used in the technique exhibits a numerical aperture of 0.

View Article and Find Full Text PDF

Highly oriented beam steering will enhance power density and field of view (FOV) in terahertz wireless links. Metasurface can be constructed by deliberate arrangement of subwavelength meta-cells to manipulate the wavefront. This paper explores a dispersive metasurface with a specific phase gradient patterned in a 2-inch aperture, allowing for collimated beamforming and two-dimensional (2D) beam steering by a combination of frequency tuning and metasurface rotation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!