We present a comparative ab initio study of Li, Na, and Mg storage in tin, including phononic effects and phase competition between α and β Sn. Mg doping at low concentration is found to stabilize the β phase. On the contrary, Li and Na doping is shown to reverse the stability of the phases at room temperature: Li/Na-doped α-Sn is more stable than Li/Na-doped β-Sn up to a temperature of around 380/400 K. This may rationalize the formation of α-Sn upon lithiation and delithiation of β-Sn anodes reported in experimental studies. The changes in phase stability with Li/Na/Mg doping are directly related to the intercalation energies of Li/Na/Mg in one phase versus the other: at 300 K, Li/Na is easier intercalated in α-Sn (-0.37/-0.08 eV) than in β-Sn (0.06/0.49 eV), while Mg intercalation energy is, although positive (i.e., unfavored intercalation), lower in β-Sn (0.53 eV) than in α-Sn (0.66 eV). The temperature effect is found to affect significantly the intercalation energy, by up to 0.13 eV at 300 K. Analysis of diffusion barriers shows that Li, Na, and Mg diffusion in β-Sn is anisotropic with migration barriers along the (001) direction (respectively, 0.01, 0.22, and 0.07 eV) significantly lower than those in α-Sn (respectively, 0.20, 0.52, and 0.40 eV).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4936284 | DOI Listing |
Int J Heat Mass Transf
March 2024
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, United States of America.
In classical theory, heat conduction in solids is regarded as a diffusion process driven by a temperature gradient, whereas fluid transport is understood as convection process involving the bulk motion of the liquid or gas. In the framework of theory, which is directly built upon quantum mechanics without relying on measured parameters or phenomenological models, we observed and investigated the fluid-like convective transport of energy carriers in solid heat conduction. Thermal transport, carried by phonons, is simulated in graphite by solving the Boltzmann transport equation using a Monte Carlo algorithm.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, India.
This study probes the vibronic interactions in the photoelectron spectra of CAlGe, exploring its six excited electronic states through an approach that combines the electronic structure calculations and the quantum nuclear dynamics. Central to this investigation is utilizing a model diabatic Hamiltonian, which allows for the exact evaluation of Hamiltonian parameters and fitting potential energy cuts (PECs). Notably, the analysis of these PECs uncovers pronounced nonadiabatic effects within the photoelectron spectra, emphasized by the presence of multiple conical intersections.
View Article and Find Full Text PDFChem Sci
December 2024
Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Electronic Devices and Materials Chemistry and School of Chemistry, Xi'an Jiaotong University 99 Yanxiang Road Xi'an Shaanxi 710054 P. R. China
The benzene tetraanion-bridged rare earth inverse arene amidinate complexes [{Ln(κ:η-Piso)}(μ-η:η-CH)] (2-Ln, Ln = Gd, Tb, Dy, Y; Piso = {(NDipp)C Bu}, Dipp = CH Pr-2,6) were prepared by the reduction of parent Ln(iii) bis-amidinate halide precursors [Ln(Piso)X] (Ln = Tb, Dy; X = Cl, I) or [Ln(Piso)I] (Ln = Gd, Y) with 3 eq. KC in benzene, or by the reaction of the homoleptic Ln(ii) complexes [Ln(Piso)] (Ln = Tb, Dy) with 2 eq. KC in benzene.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
December 2024
Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy.
The adsorption of (X = Ni, Pd, and Pt) nanoclusters is simulated by using first-principles methods on MgO(100) and on a MgO monolayer supported on Ag(100), considering the presence of interfacial oxygen. On both the free-standing MgO surface and MgO/Ag, all clusters exhibit robust adhesion and negative charge transfer. molecular dynamics calculations at 200 K demonstrate the stability of the nanoparticles on the MgO/Ag support.
View Article and Find Full Text PDFLangmuir
December 2024
School of Materials, Sun Yat-sen University, Shenzhen 518107, China.
Hydrogen sulfide (HS), carbonyl sulfide (COS), and dimethyl sulfide (DMS) are the primary sulfur compounds found in seawater, which cause pitting corrosion on the oxide passivation film of titanium, known as "the marine metals". In this study, density functional theory (DFT) was used to analyze the adsorption and surface electronic properties of these three small molecules on the anatase TiO(101) surface. The analysis was conducted through adsorption energy, work function, Mulliken charge population, and density of states (DOS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!